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Abstract. Although state-of-the-art unsupervised optical flow methods
achieve impressive results in clean scenes, they still struggle under low-
visibility weather and illumination. However, generalizing to those condi-
tions is essential in real-world safety-critical settings, such as autonomous
driving. We tackle this issue with RobFlow: an effective unsupervised
learning framework that works reliably under both, standard and low-
visibility conditions. Our approach is based on observations regarding the
challenges of low-visibility images. Low quality features in low-visibility
weather or illumination will degrade the estimation of motion bound-
aries in optical flow. To address these issues, we design a local-structure
recovery to bridge the difference between clean and low-quality features.
Additionally, we propose a confidence map to correct possible inconsis-
tency during unsupervised learning, which will filter out large error pixels
in a comparative manner. Extensive experiments demonstrate the effec-
tiveness of our techniques. Our method outperforms prior works in both
standard and low-visibility conditions, without any increase in parameter
count.

1 Introduction

Optical flow, which aims at estimating pixel-level motion for videos, is funda-
mental for high-level computer vision applications, such as autonomous driving,
video editing or object tracking. While supervised optical flow estimation meth-
ods have achieved remarkable progress, they rely on ground-truth labels, which
are expensive to collect [5, 22]. Obtaining ground-truth labels requires 3D sen-
sors and manual effort [5, 21]. To evade these issues, geometrical constraints
have been widely explored for learning optimal flow in self-supervised frame-
works [8, 12, 16, 17, 38]. Such methods are inexpensive and trained with only
image sequences captured from RGB cameras.

Unsupervised approaches mainly rely on brightness constancy [24, 36]. Pre-
vious methods are able to produce sharp and accurate flow in clean scenes e.g.,
in good ligthing conditions. Adverse weather and low-illumination conditions
(e.g., fog and night) further introduce noise that affects pixel correspondence as
shown in Fig. 1. However, optical flow estimation in safety-critical settings such
as autonomous driving [4, 27] require robust optical flow in all conditions.
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Fig. 1: ARFlow performs well on clean scenes but suffers from degradation in adverse
conditions. Our method exhibits robustness to various environmental changes.

A few pioneering works have investigated optical flow estimation in adverse
weather conditions. However, they are mostly tailored to specific weather sce-
narios and rely on highly complex pipelines and architectures [13, 35, 37, 40].
Moreover, weather-agnostic models suffer from a significant degradation when
applied to a standard daytime environment [39] or need to introduce additional
sensors [10,11]. Therefore, there is a need to introduce a straightforward frame-
work that can achieve robust optical flow estimation in both clean and low-
visibility conditions with only RGB image input.

Motion boundary errors is the main error in optical flow estimation under
low-visibility conditions that degrade the feature quality and blur the motion
boundaries in optical flow, as shown in Fig. 1 col 2. Ideally, optical flow should
be invariant for the same image pair taken under different and low-visibility con-
ditions. In this work, we leverage the clean optical flow prediction as a reference
to investigate the causes of the performance degradation under low-visibility
conditions.

Specifically, we observe a clear difference in features between clean and low-
visibility images. Intuitively, if the feature is invariant to weather conditions,
a model will produce a consistent flow for clean and adverse scenes. Thus, we
propose a local-structure recovery method that tries to minimize the structural
differences between clean and degraded features by using local cosine similarity.
Our key assumption is that minimizing the feature structure differences can re-
sult in more similar optical flows. Furthermore, we propose a duo-photometric
loss Ldph, which uses the same training signal to guide both clean and noisy
scenes and a Confidence Map (CM), which evaluates the reliability of each pixel
in clean feature. CM is used to selectively guide the degraded feature with trust-
worthy pixels. Fig. 1, column 3, shows that our RobFlow method can handle
various environmental changes and produces consistent flow estimates for dif-
ferent visibility conditions, which indicates its applicability for safety-critical
applications.

We summarize the main contribution as follows:

• We propose a local-structure recovery technique to cope with motion bound-
ary errors caused by low-visibility images such as during fog and at night
time. We propose a reliable self-guidance method that filters out unreliable
pixels during self-supervised learning and increases stability.
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• Our proposed method simultaneously improves optical flow estimation in
clean scenes and in low-visibility conditions for synthetic and real-world data,
without requiring additional parameters.

2 Related Work

Optical Flow Estimation. Optical flow estimation is the task of estimating
pixel-level motion between video frames. Recently, many deep learning based
methods have been proposed to learn optical flow in a supervised manner [7,
9, 18, 29–31, 34]. PWC-Net [30] proposed a warp, cost volume architecture that
estimates optical flow in a coarse-to-fine pyramid. RAFT [31] improved it by
replacing the encoder with GRU and proposed a 4D cost volume that matches all
pairs of pixels. GMA [9] further proposed a transformer module to capture hidden
motion. To deal with the lack of real data, unsupervised methods [8,15,17,20,28]
have been proposed with photometric loss. Selflow [17] proposed to distill reliable
flow estimations from non-occluded pixels, and use these predictions as pseudo-
label to learn optical flow for hallucinated occlusions. ARFlow [15] proposed to
use the original image as a signal to guide augmented images.

Optical Flow under Challenging condition. Optical flow estimation has
achieved remarkable results in clean scenes [7–9, 15, 17, 20, 30, 31]. However, es-
timation remains challenging in the presence of adverse weather or illumination
effects, such as rain, fog, or low-light. Previous research has mainly focused on
addressing specific weather effects by designing tailored methods or datasets.
RobustFlow [13] was the first method to estimate optical flow in rainy scenes,
by using a handcrafted residue channel and its color variant as a prior that is
invariant to rain streaks. RainFlow [14] proposed a feature mapping operation
that automatically learned rain-invariant and veiling-invariant features in a su-
pervised manner. Zheng et al. [37] developed a method to synthesize large-scale
low-light optical flow datasets by simulating the noise model on dark raw im-
ages. Yan et al. [35] proposed DenseFogFlow, a semi-supervised method that
modeled the flow consistency between clean images and their corresponding ren-
dered foggy images, to overcome the difficulty of collecting ground truth for
real fog scenes. Schmalfuss et al [26] propose that augmenting the training data
with weather effects enhances the robustness of optical flow methods in cross-
dataset evaluation. Zhou et al. [40] presented an unsupervised domain adaptation
method that adapted the model from synthetic fog images to real fog images.
They propose to address motion boundary error by transferring the knowledge
from a clean weather network to an adverse weather network. In contrast, we
propose to address this issue by directly recovering the clean features from the
adverse weather features in a single network, which also preserves the perfor-
mance for clean images. GyroFlow [10] resorted to a hardware scheme to handle
adverse weather, and utilized gyroscope data to obtain ego-motion labels of the
camera for weakly-supervised optical flow estimation. GyroFlow+ [11] extended
GyroFlow by proposing a self-guided fusion module that fused the background
gyro field with the optical flow to obtain more detailed motions. However, this
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approach was still limited by the hardware and the availability of ego-motion
labels. Compared with previous methods, our method is the first to handle both
clean and low-visibility conditions in an unsupervised manner, without requiring
any additional sensors or labels.

3 Method

3.1 Overview

In this paper, we introduce RobFlow, a self-supervised architecture that robustly
estimates optical flow in both clean and low-visibility (e.g., fog, night-time). Our
approach utilizes the effectiveness of previous methods in clean scenes to reduce
the motion errors in adverse settings.

We highlight the trade-off existing models face in clean and adverse condi-
tions and the lack of generalization to unseen data. The pipeline of our novel
framework is shown in Fig. 2. In our experiments, we use SelFlow [17] and
ARFlow [15] as baseline methods. Our method does not increase parameters
and memory during testing.

3.2 Preliminaries

Clean-to-adverse translation. To achieve the above, we need correspondence
between low-visibility and clean samples. Following [25], we use a physics-based
renderer (PBR) [32] to generate fog. CoMoGan [23] is used to generate night
time scenes for the KITTI dataset. These two methods can preserve the original
image as the background, and overlay adverse effects in the foreground.

We apply the above methods to generate one-to-many projections, where one
clean image corresponds to fog and night images. During training, we choose a
clean and a random adverse image as a corresponding pair. For clarity, we denote
Ic = (I

(1)
c , I

(2)
c ) as clean images, and denote Ia = (I

(1)
a , I

(2)
a ) as corresponding

degraded images because of, e.g., fog. We select ARFlow [15] as backbone. In each
training step, the network predicts clean flow Ω(Ic) by (I

(1)
c , I

(2)
c ) and generates

degraded flow Ω(Ia) by (I
(1)
a , I

(2)
a ). Following the original methods, we keep

the smoothing loss along with the respective method’s specific constraints for
the clean flow Ω(Ic), and we propose our loss function as extra constraints to
enhance the network’s robustness for all the above conditions.

3.3 Local-Structure Recovery

Duo-Photometric Loss. In unsupervised optical flow estimation, a photomet-
ric loss Lph is used as the main constraint. Low-visibility weather breaks the
brightness constancy [39], previous methods [39, 40] use clean optical flow as
a pseudo-label to guide degraded flow with a self-supervised loss, as shown by
Lself in Eq. (1).
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Fig. 2: Overall architecture of RobFlow. The corresponding low-visibility pairs are
generated before training. In each step, we feed the original and a random low-visibility
pair to the network, and align the feature and motion by our proposed methods.

Lph =
∑

|I(1)c −W (I(2)c Ω(Ic))| Lself = |Ω(Ic)−Ω(Ia)| (1)

However, this approach is constrained by the accuracy of the clean flow es-
timation, as the clean flow may generate errors during unsupervised training,
which may mislead the network when guiding the degraded flow. Moreover, based
on Eq. (1), the clean and degraded flows are trained with different signals: the
estimation of clean flow is learned by the photometric loss while estimation of
degraded flow is learned from the clean flow. This strategy could result in a
discrepancy between the final outputs of clean and adverse conditions.

As an example, imagine in the i-th iteration, we generate a clean flow from a
clean image and a fog flow from a corresponding fog image. We use the clean flow
to guide the fog flow, which will produce errors if any pixels of the clean image
have lower accuracy than the fog flow. Therefore, we propose an efficient strategy
that lets the clean flow and the fog flow learn from the same signal, i.e., the clean
image. By exploiting the corresponding pairs of clean and adverse images, we
can leverage the clean image as guidance in calculating the photometric loss for
the fog optical flow. The duo-photometric (DPH) loss Ldph, can be defined as
follows.

Ldph =
∑

|I(1)c −W (I(2)c , Ω(Ic)|+
∑

|I(1)c −W (I(2)c , Ω(Ia))| (2)

To reveal the impact of different adverse conditions on the feature extraction
of unsupervised models, we conduct analytical experiments on the synthetic
KITTI [5] dataset.

Taking ARFlow as an example, we compared the pixel-wise difference of
features from the encoder between clean and foggy images. As illustrated in the
left panel of Fig. 3, there is a clean contrast inside the red rectangle between
the clean and fog features extracted by ARFlow. As a result, the optical flow for
foggy images exhibit a blurred motion boundary in the same region compared
to the clean flow. This leads us to hypothesize that having similar feature maps
in the encoder part will produce more consistent optical flows.
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Fig. 3: The relation between features and optical flow. On the left, we show the features
difference map between clean and foggy images. Our RobFlow method generates more
similar features for clean and foggy images, and the optical flow in foggy conditions is
closer to the optical flow in clean conditions. We report the Cumulative Distribution
Function (CDF) of the distance between clean and foggy conditions in the KITTI
dataset [5]. The top right figure shows the pixel-wise distance between clean and fog
features. The bottom right figure shows the pixel-wise accuracy of fog optical flow and
ground truth.

Methods Clean Fog Dark

EPE F1-all EPE F1-all EPE F1-all

ARFlow† [15] 2.84 9.87 5.43 15.79 8.22 26.85
ARFlow [15] 4.51 14.42 4.78 14.17 7.23 23.58
ARFlow-D 3.27 10.91 4.27 13.28 6.82 20.75

Selflow [17] 5.58 15.83 5.27 15.64 8.13 26.61
Selflow-D 5.02 15.12 4.92 14.83 8.54 27.25
GMA [9] 3.32 10.73 3.60 12.39 5.14 17.90

UPFlow-D [19] 2.81 10.03 4.32 14.58 4.55 18.23
RobFlow 2.68 9.36 2.79 9.87 3.47 12.96

Table 1: Quantitative results on KITTI datasets: D stand for the denoise module, we
use AECR-Net [33] for defog and MCR [2] for dark images, †: only training on clean
dataset, zeroshot inference on low-visibility conditions. Bold text represents the best
result for the metric for each test. Whereas, the underlined text represents the second
best for the metric of each test.
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Therefore, we aim to minimize the discrepancy between the clean and low-
visibility weather features. However, the features from different domains are
difficult to project in a homogeneous space [39]. Instead of forcing them to have
the same features, we relax the objective to have similar local structures for
motion estimation. To this end, we propose the local-structure recovery (LSR)
loss. Given the input Ic and Ia, the features F i

c and F i
a from the i-th block of the

encoder can be obtained. Using N (pij , d) to represent the d-order neighbourhood
of pixel pij in the feature space,

⋃
represent the flatten operation, the local

information q can be defined as

q =
⋃

N (pij ,d)

pij . (3)

Next, we try to recover qa from the corresponding qc. According to our observa-
tion in Sec. 3.3, the flow from clean features is not guaranteed to be correct. The
clean features may also not guaranteed to be better than degraded feature for
each pixels. Intuitively, we could reduce the error by ignoring those unreliable
pixels. Thanks to our DPH Eq. (2), both optical flow estimations are optimized
using the same clean reference image. We can obtain two error maps by comput-
ing the difference between the reference image and the target image warped by
either the clean or the degraded flow. By comparing the corresponding pixels in
the two error maps, the confidence map is determined by whether a pixel in the
clean flow has smaller errors than the degraded flow. Inspired by [6], we use it
to filter out unreliable pixels if the clean flow error is larger than the degraded
flow error. The remaining reliable pixels pij are obtained by filtering with K are
defined as follows:

K =
{
pij | |I(1)c −W(Ω (Ic) , I

(2)
c )| < |I(1)c −W(Ω (Ia) , I

(2)
c )|, pij ∈ I(1)c

}
(4)

Finally, we use the cosine similarity to align features and the local-structure
recovery loss can be described by

Llsr =
1

|K|
∑

pij∈K
1− qaq́c

∥qa∥ ∥q́c∥
(5)

∥∥ denotes the Euclidean norm and´denotes the stop gradients. In practice,
we use the intermediate flow of the same level as the feature map to generate the
confidence map for the feature with the same resolution. Fig. 3 top left, visualizes
the difference map of foggy and clean features of RobFlow. Our method effec-
tively reduces the distance between the clean and foggy features, and predicts a
more accurateflow in the green rectangle. Fig. 3 top right shows the distribution
of the level-wise feature distance between fog and clean condition for the KITTI
dataset. We observe that our RobFlow has a statistically smaller distance than
ARFlow and Selflow. The bottom right figure shows the pixel-wise accuracy of
fog optical flow and ground truth (clean flow is closer to the GT overall). By
considering these two figures, we observe that the similarity of fog features and
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clean features is positively correlated with the similarity of fog optical flow and
clean optical flow which supports our claim.

The total loss of our RobFlow framework is described as follows:

Lall = Ldph + ω1Llsr + ω2Lsm + ω3Laug (6)

where Lsm is smooth loss [20] and Laug is augmentation loss [15].

Methods Ldph Lself LSR C.M Clean Fog Dark

EPE F1-all EPE F1-all EPE F1-all

ARFlow† [15] 2.84 9.87 5.43 15.79 8.22 30.04
ARFlow [15] ✓ 11.72 28.04 12.19 30.66 14.02 26.85
ARFlow [15] ✓⋆ 4.51 14.42 4.78 14.17 7.23 23.58

RobFlow ✓ 3.21 12.24 3.94 13.94 5.62 18.76
RobFlow ✓ ✓ 3.18 12.35 3.67 12.26 4.27 16.59
RobFlow ✓ ✓ ✓ 2.91 10.71 3.42 11.68 3.92 15.27
RobFlow ✓ ✓⋆ ✓ ✓ 2.68 9.36 2.79 9.87 3.47 12.96

Table 2: Ablation study: Ldph indicates Eq. (2), Lself indicates Eq. (1), LSR indicate
the local-similarity recovery without confidence map, C.M indicates confidence map.
✓⋆ is a small scale loss (e.g. 0.01).

4 Experiments

4.1 Experiments Setup

Datasets. We conduct experiments on synthetic and real-world datasets. Our
synthetic dataset is based on KITTI 2015 [5], we generate fog with physics-
based rendering [32], and generate night time images by CoMoGAN [23]. We
use EPE [3] and F1-all [5] metrics for evaluation.

Comparison Methods. We select recent SOTA unsupervised methods SelF-
low [17], ARFlow [15], and UPFlow [19] which are designed for clean scenarios
and select SOTA supervised methods GMA [9], (recent Fog optical flow meth-
ods [35] and [40] are not public code or weight). For a fair comparison, super-
vised methods were pre-trained on synthetic datasets with optical flow labels
and then fine-tuned on target datasets with a self-supervised strategy [28]. Un-
supervised methods were directly trained on the KITTI multiple-view dataset
without seeing testing data. We also experiment with extra training strategies for
unsupervised methods by first denoising images (deraining or defogging) during
training before testing in the denoised images. Our RobFlow uses ARFlow [15]
as the backbone. RobFlow∗ uses Selflow [17] as the backbone. For a fair com-
parison, we adopt the same hyperparameter settings from the original works,
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such as batch size, learning rate, optimizer, and image augmentation. Neither
of the proposed methods introduces any additional parameters compared to the
original method.

4.2 Experiments on KITTI

Tab. 1 compares the results of our model, RobFlow, with previous state-of-
the-art methods on the Synthetic KITTI 2015 test set. We make the following
observations: Both RobFlow and RobFlow∗ outperform the original network on
both clean and low-visibility conditions. RobFlow outperforms ARFlow on the
original KITTI dataset, and achieves clearly better results than all previous
state-of-the-art methods on the adverse weather test set. As a baseline model,
ARFlow [15] (Row 1), trained only with clean KITTI images, fails to generalize
to adverse weather conditions. ARFlow [15] (Row 2), trained with both clean
and weather images, improves its performance on the adverse weather test set,
but degrades its performance on the clean test set. The denoising methods (rows
3 & 5) improve the results for foggy images, but worsen the results for night
images, because they unintentionally damage to the image details negating the
benefits of noise removal.

Fig. 4 demonstrates three samples from the KITTI dataset. We find that all
methods perform well on the original KITTI images. However, ARFlow [15] and
UPFlow [19] both fail under foggy or dark conditions with the same scenes. In
(a), ARFlow breaks the car into two pieces in low-visibility conditions, while
UPFlow generates noisy motions and incorrect shapes of the car. In (b) and
(c), ARFlow tends to ignore parts of objects, while UPFlow merges objects
together, which could provide incorrect information in an autonomous driving
system. However, our RobFlow maintains consistent results across all conditions,
demonstrating its stability.

Methods
Snow I.C. Complex

EPE F1-all EPE F1-all EPE F1-all

SelfFlow [17] 5.82 16.03 8.41 27.24 9.87 51.27

ARFlow [15] 4.89 14.86 7.72 23.71 8.05 48.12

GMA [9] 3.54 11.04 5.64 18.14 5.97 23.41

RobFlow 2.81 10.42 2.96 10.50 3.52 13.21

Table 3: Quantitative results on Zero-shot experiments.

4.3 Ablation study.

This section presents an ablation study to examine the contribution of each
component in our method. We evaluate our model on both clean and adverse
weather datasets to demonstrate its robustness and generalization in Tab. 2.
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The first row shows the results of ARFlow trained with only clean images,
which lacks the ability to handle adverse conditions.

Self-supervision (rows 2 & 3). When training the network with Eq. (1)
that uses clean optical flow to guide adverse condition optical flow, the clean
flow may have errors that affect the backpropagation and degrades the model
performance for all images. When we reduce the self-supervision loss, the network
improves the results for adverse condition images, but deteriorates the results
for clean images. This trade-off exists in most of the previous methods.

Duo-photometric loss (row 4). We optimize the network for both the
clean and adverse conditions data simultaneously using the duo-photometric
loss. We observe improvements for both clean images and adverse condition
images. However, the performance of clean scenes is still not comparable with
the original network (row 1), which motivates us to further reduce motion errors.

Fig. 4: Qualitative results of optical flows on KITTI.

Local-structure recovery (rows 5 & 6). We investigate the effects of
LSR (Eq. (6)) and the confidence Map (Eq. (4)). First, we reduce the difference
between clean and weather features by exploiting the consistency of clean images.
This leads to a significant improvement in both clean and images in adverse
conditions, especially in dark images. Second, we evaluate the impact of the
confidence map that filters out unreliable pixels for guidance. This also results in
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a reduction of the loss for all test sets. This confirms our hypothesis that reducing
the errors in guidance benefits both clean and adverse conditions performance.

ALL (row 7). Our model trained with all of the contributions leads to clean
results that surpass ARflow and have the best bad weather performance in row
8. We show that all components are effective in reducing the metrics for adverse
conditions while maintaining the performance of clean data.

4.4 Zero-shot Experiment

To test the generalization ability of our method in real-world applications, we
also conduct zero-shot experiments on different domains that are not seen dur-
ing training. We use CoMoGAN [23] to synthesize images with different lighting
conditions, such as dawn and dusk, and [1] to generate images with snow from
the KITTI 2015 dataset. Then, we combine these techniques to create more com-
plex scenarios, such as fog+dusk, fog+night. We use the same weights that have
been trained on previous experiments and evaluate the respective method on
this new test set without any fine-tuning. Tab. 3 reports the results of the zero-
shot experiments in five categories: snow, illumination change (I. C.) (dawn and
dusk) and complex (fog+dusk, fog+night, etc) for synthetic data. Our method
outperforms all comparison and shows robustness on unseen data, which indi-
cates that it could be a potential method for real-world applications. We collect
more complex real-world data and evaluate in the supplemental material.

Index Fog Dark

L1 1.36 2.41
Cosine Similarity 1.20 2.08

LSR(1) 0.94 1.87
LSR(2) 1.02 1.91

Table 4: Discussion on feature
loss. (i) is i-order neighbourhood.

Image Translation Fog Dark

Paste 1.04 -
CycleGAN [41] - 1.94
CoMoGAN [23] - 1.87

PBR [32] 0.94 -

Table 5: Discussion on different
image translation strategies.

4.5 Discussion

Image Translation. Our proposed method requires corresponding pairs of im-
ages to establish a relationship between the clean and low-visibility conditions
domains. Therefore, the choice of image translation model is crucial. We com-
pare different strategies to generate low-visibility images. 1. We use software
tools such as Adobe After Effects and Photoshop to create fog effects and over-
lay them on clean images. 2. We use generative adversarial networks (GANs)
such as CycleGAN [41], or CoMoGAN [23] to produce realistic fog images. 3.
We use physics-based rendering (PBR) [32] to simulate the optical effects of fog
conditions. We training our methods whith syntetic data by the above methods,
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and test in real data [11]. We present the results in Tab. 5, and observe that
CoMoGAN achieves the best performance for dark images, and PBR for fog im-
ages. This is because CoMoGAN and PBR preserve the structure of the original
images better than the other methods.

Importance of Duo-photometric loss. As shown in Tab. 2, our duo-
photometric (DPH) loss outperforms the self-supervised loss based on clean flow.
We hypothesize that the main reason is that clean flow introduces errors during
training, which degrade the learning quality of flow in adverse conditions. By
using the DPH loss, the flow in low-visibility conditions is less affected by the
errors in the clean flow, and thus flow results are improved. Previous experiments
have supported our hypothesis. We have analyzed and demonstrated that the
clean flow generates errors while the degraded flow is more accurate in some
pixels.

Importance of Local-structure Recovery. To evaluate the impact of
the flow encoder, we conducted an experiment with three different methods for
aligning clean and noisy features: L1 distance, cosine similarity, and our proposed
local structure recovery. We observed that our local-structure recovery achieves
better results than the other two methods. The reason is that the L1 distance
or vanilla cosine similarity attempts to align pixel-level features for inputs of
different domains, which is hard to achieve in a shared encoder. In an optical flow
estimation model, we are more concerned about structure information (shape,
geometry) than appearance information. Therefore, we only want to align local-
structure information as a soft guidance.

5 Conclusion

In this work, we propose RobFlow, a simple and efficient unsupervised framework
that can handle both clean and low-visibility conditions, which are a major
obstacle to real-world applications (e.g., autonomous driving). To achieve this,
we observed that low-quality features caused by low-visibility scenes could lead
to boundary errors. Thus, we use local-similarity recovery to reduce the distance
between features of clean and low-visibility images. We also propose a duo-
photometric loss to reduce errors in unsupervised training. We have performed
comprehensive experiments to demonstrate the robustness and generalization
ability of the proposed RobFlow.
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