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Abstract. Extracting a Bird’s Eye View (BEV) representation from
multiple camera images offers a cost-effective, scalable alternative to
LIDAR-based solutions in autonomous driving. However, the perfor-
mance of the existing BEV methods drops significantly under various
corruptions such as brightness and weather changes or camera failures.
To improve the robustness of BEV perception, we propose to adapt a
large vision foundational model, DINOv2, to BEV estimation using Low
Rank Adaptation (LoRA). Our approach builds on the strong representa-
tion space of DINOv2 by adapting it to the BEV task in a state-of-the-art
framework, SimpleBEV. Our experiments show increased robustness of
BEV perception under various corruptions, with increasing gains from
scaling up the model and the input resolution. We also showcase the
effectiveness of the adapted representations in terms of fewer learnable
parameters and faster convergence during training.

1 Introduction

Accurate perception of the surrounding scene in 3D is crucial for safe navigation
in autonomous driving. LIDAR sensors can provide accurate 3D measurements,
however, due to their high cost and consequently scalability issues, camera-based
solutions are explored as an alternative. Specifically, substantial efforts have been
directed toward extracting bird’s-eye view (BEV) representations from multi-
camera images [6, 12, 17, 20, 29], providing a more cost-effective solution. BEV
representations are assumed as input to motion prediction methods [5, 7] and
are increasingly used as part of end-to-end driving systems [8, 9, 11,14,28].

While the robustness of these models under various conditions is a critical
factor for ensuring safety, recent work [24] shows that BEV perception models
suffer from performance degradation when exposed to different types of corrup-
tion such as brightness changes, adversarial weather conditions, motion blur,
quantization, frame loss, and camera crash, highlighting a significant challenge.
The accuracy of BEV perception plays a crucial role in both motion predic-
tion [25] and end-to-end driving. While privileged agents that have access to
ground truth BEV demonstrate an impressive driving performance, their stu-
dent counterparts suffer from mistakes in predicted BEV maps [28]. Similarly,
the performance of motion prediction methods drops notably while switching
from ground truth BEV to the predicted BEV [25].
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(a) Performances under corruptions (b) Performance Drop under Corruptions

Fig. 1: Robustness Analysis on nuScenes-C. We compare the models under dif-
ferent types of corruptions in a, where each axis is normalized over the maximum
performing model, i.e. ViT-L adaptation. We show the performance drop of models
relative to their performance on clean data in b, where each axis is normalized to the
clean data performance of the corresponding model.

The availability of large-scale datasets has facilitated the emergence of vi-
sual foundation models, renowned for their generalization capabilities. Notably,
DINOv2 [19] stands out for its robust, general-purpose visual features, making
it a suitable choice for various tasks such as zero-shot correspondence estima-
tion [27], robotics [4], object-centric learning [1], point tracking [2], and object
segmentation [18]. Despite the rich representation capacity of DINOv2, only a
few works [22, 23] have explored its potential for BEV segmentation. In this
work, we aim to explore the effectiveness of DINOv2 for robust BEV perception
including performance, parameter efficiency, and convergence behavior.

We integrate DINOv2 into a state-of-the-art BEV segmentation model, Sim-
pleBEV [12], by utilizing an efficient adaptation technique [13]. Specifically, we
replace the backbone of SimpleBEV with DINOv2 for feature extraction and
then efficiently update it using Low Rank Adaptation (LoRA). We systemati-
cally analyze the effectiveness of our approach by comparing the robustness of
our adaptation to the original SimpleBEV with ResNet-101 backbone in terms
of accuracy, parameter efficiency, and convergence behavior. Our experiments
reveal that our adaptation improves the robustness of BEV perception under
adversarial conditions with significantly lower learnable parameters and shorter
training times.

2 Related Work

Camera-based BEV Segmentation: Bird’s-eye-view (BEV) representation
is frequently used in autonomous driving to capture spatial information effec-
tively. BEV summarizes the scene in a clear and compact representation by
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extracting the necessary 3D information from 2D images. BEV methods first
process camera images using a backbone, and then construct a discrete 3D rep-
resentation of the surrounding scene by transforming 2D image features to 3D
voxel grids. After constructing the 3D voxel grid, the features are decoded into
a 2D BEV representation of the scene, after flattening the height dimension.

We can categorize the existing work on BEV into three based on how they
extract 3D information from 2D images:

i) Depth-based methods [16, 20], learn an explicit depth distribution at each
pixel. They perform a weighted sum over the depth probabilities to back-
project image features to 3D. However, learning an explicit depth distribu-
tion can be challenging due to the complexity of accurately modeling the
depth for every pixel. Furthermore, voxel grids can only accumulate sparse
features, which magnifies projection errors.

ii) Attention-based models [3,29] learn to align image features with voxel grids
with an attention mechanism, leveraging camera-aware position embeddings
to implicitly learn depth. However, learning projection via attention causes
performance issues in attention-based approaches.

iii) Sampling-based methods [12, 17] address these issues by sending rays from
voxel grids to the images and bilinearly sampling the intersecting image
features. Changing the direction of sampling increases the density of features
in the voxel grid, relying on the quality of the features rather than the
accuracy of projection.

Due to these reasons, we choose a sampling-based method, SimpleBEV [12] for
our analysis.

Vision Foundational Models in BEV: Foundational models trained on
large-scale data provide robust representations, improving performance in vari-
ous downstream tasks [1,4,18,27] due to their inherent semantic understanding
and strong generalization capabilities. Although foundational models are trained
solely on 2D data, they are shown to capture some 3D information from im-
ages, as tested on multi-view correspondence and depth estimation tasks [10,26].
Among the foundational models evaluated, DINOv2 [19] performs the best for
the 3D tasks considered, alongside Stable Diffusion [21], indicating its poten-
tial for 3D scene understanding. There is recent work building on foundational
models for pre-training a BEV network for occupancy prediction [23] or sensor
fusion [22] by benefiting from semantic capabilities of DINOv2 [19]. We directly
target improving BEV estimation from camera images by adapting DINOv2.

3 Methodology

Our goal is to integrate visual foundation model DINOv2 [19] into BEV pre-
diction model, SimpleBEV [12]. In this section, we first explain our adaptation
strategy, Low Rank Adaptation (Section 3.1) and then SimpleBEV (Section 3.2)
for completeness, and finally, present our approach to integrate DINOv2 into the
SimpleBEV framework (Section 3.3).
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3.1 Low Rank Adaptation (LoRA)

Low Rank Adaptation [13], i.e. LoRA, is widely used in Natural Language Pro-
cessing to adapt pretrained large models to different tasks. LoRA is parameter
efficient compared to fine-tuning, as only low-rank matrices are trained as resid-
uals to frozen weights. Following the approach in MeLo [30], we update only the
query and value projections in all attention layers in the ViT. Formally, given
a pre-trained weight matrix W{Q,V } ∈ Rd×d, we obtain W′ as the result of
adaptation:

W′
{Q,V } = W{Q,V } +BA (1)

where A ∈ Rr×d and B ∈ Rd×r are learned matrices, r is the rank, and d is
the feature dimension. We train only the B and A matrices while keeping the
original W frozen for each attention layer.

3.2 SimpleBEV

Given images from N cameras, SimpleBEV [12] first extracts a feature map
fi ∈ Rd×Hf×Wf for each image i ∈ {1, 2, . . . , N}, where d represents the feature
dimension, and Hf ×Wf , the size of the feature map. The method then employs
a parameter-free lifting technique to transform image features into a 3D voxel
grid V ∈ Rd×X×Y×Z , where X, Y , and Z correspond to the width, height and
depth of the grid, respectively.

For each voxel Vp ∈ Rd in the grid, represented by the 3D coordinate p =
[x, y, z], the corresponding 2D pixel coordinates qi = (ui, vi) is calculated by
projecting p onto the 2D image plane of each camera i, using the intrinsic and
extrinsic matrices Ki and Ei:

qi = KiEip (2)

The feature values are then bilinearly sampled from the feature map fi at these
projected coordinates, qi. Then, sampled features from all N cameras are ag-
gregated and assigned to the corresponding voxel on the 3D grid:

Vp =
1

N

N∑
i=1

sample(fi,qi) (3)

After aggregating features for all Vp ∈ V and constructing a 3D voxel grid V
that encapsulates the entire scene, a compressor reduces this voxel grid into a
2D BEV feature map B ∈ Rd×X×Z . The decoder then predicts the probability
of occupancy for each grid cell. The model is trained using binary cross-entropy
loss to optimize these predictions.

3.3 Adaptation of DINOv2 to BEV

Integrating DINOv2: We perform two main steps to integrate DINOv2 into
SimpleBEV. First, we introduce additional layers in the query and key com-
ponents of the ViT-based DINOv2 for adaptation, as described in Section 3.1.
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Fig. 2: Overview. In this work, we propose to adapt DINOv2 to BEV segmentation
using Low-Rank Adaptation (LoRA) for a robust BEV model. There are three main
steps: i) We encode the camera images using DINOv2 to obtain tokens for each view,
with attention weights updated through LoRA. ii) Transform image features from 2D
to 3D using pull mechanism proposed by [12]. iii) Decode BEV features to 2D vehicle
BEV masks.

Next, we replace the feature map fi ∈ Rd×Hf×Wf with the output tokens of DI-
NOv2 for each corresponding camera view, followed by pooling as shown in (3).
During training, only the additional layers are updated, while the original DI-
NOv2 model remains frozen. SimpleBEV, with its original ResNet-101 backbone,
serves as the baseline for comparison.

Evaluation Aspects: We assess the quality of our adaptation by focusing on
three key aspects in the evaluation:

i) First, we consider input resolution, both image and feature map, where
the ability to achieve high performance with lower-resolution inputs is ad-
vantageous, as it demonstrates efficiency in processing.

ii) Second, we evaluate the number of learnable parameters, which not
only indicates the resource efficiency of training but also reflects the robust-
ness and general-purpose nature of the input features. Models with fewer
parameters that still perform well suggest that the features are inherently
strong, as they require minimal transformation.

iii) Lastly, we examine convergence speed, favoring models that reach op-
timal performance quickly, as this reduces computational and time-related
costs during training. Convergence is measured by the number of updates
needed, with faster convergence indicating more effective use of general-
purpose features.

As a result, we prioritize models that excel in using lower-resolution inputs, have
fewer learnable parameters, and converge more quickly, as these traits highlight
the efficiency and robustness of our adaptation.
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Table 1: Quantitative Results on nuScenes Validation Set. This table compares
the results of SimpleBEV and DINOv2 adaptations with different backbones. The
• • • represents the number of iterations in the full training of SimpleBEV, which
corresponds to 25K steps, while • represents one-third of it. See text for details.

Model Backbone Input Feature #Steps mIoU Exp.Resolution Resolution

SimpleBEV ResNet-101 224 × 400 28× 50 • • • 42.3 A
448 × 800 56× 100 47.4 B

DINOv2

ViT-B 224 × 392 16× 28 • • • 42.3 C
ViT-L 43.4 D

ViT-L
224 × 392 16× 28

•
43.2 E

392 × 700 28× 50 47.6 F
448 × 784 32× 56 47.7 G

4 Experiments

4.1 Experimental Setup

Datasets and Metrics: We conducted our experiments on the nuScenes [5]
dataset, which is widely used for training and evaluating camera-based BEV
segmentation methods. The dataset contains 28130 instances in the training set
and 6019 instances in the validation set. For robustness analysis, we conducted
experiments on the nuScenes-C benchmark [24], which is designed to measure
the robustness of camera-based BEV perception models across eight types of
corruptions under three levels of severity. The corruptions in this dataset are
grouped into 8 categories: brightness, darkness, fog, snow, motion blur, color
quantization, camera crash, and frame loss. For detailed descriptions of these
augmentations, please refer to RoboBEV [24]. Following prior work, we use the
mean Intersection-over-Union (mIoU) to evaluate model performance, measuring
the overlap between our predictions and the ground truth boxes.

Training Details: We train the adaptation models using ViT-B and ViT-L
architectures with the AdamW optimizer, a learning rate of 1 × 10−3, and one
cycle scheduler. For fine-tuning, we use a lower learning rate, 1× 10−5, and set
the effective batch size to 16. For the ViT-B model, we followed the default
training schedule of 25K updates as suggested in [12]. For the ViT-L model,
we additionally explored shorter training time, using approximately one-third of
the default steps to demonstrate the effect of adaptation on convergence with a
large backbone.

4.2 Adaptation

We compare the performance of our adaptation models to the original Simple-
BEV results in Table 1. Our comparisons focus on three key aspects: i) Same
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input resolution, ensuring the models are evaluated under identical conditions;
ii) Same feature map resolution to assess the efficiency of the spatial features
encoded by the models; iii) Update iterations to understand the convergence
speed and training efficiency of the models.

Same Input Resolution: Vision-based BEV perception models rely entirely
on image input, making image resolution critically important. As demonstrated
in [12], increasing the input resolution can improve performance up to a certain
limit. Considering these, we choose to experiment on 224 × 400 and 448 × 800.
We compare the models with nearly identical input resolutions3 to assess their
effectiveness when processing a similar number of pixels for a fair evaluation.
For the smaller resolution, SimpleBEV and DINOv2 ViT-B reach the same level
of performance, 42.3 mIoU (A vs. C), while ViT-L surpasses SimpleBEV by
1.1 points (A vs. D). For the higher resolution, ViT-L outperforms SimpleBEV
by a small margin, with mIoUs of 47.4 and 47.7, respectively (B vs. G). This
demonstrates that the adapted DINOv2 backbones can reach the performance
of SimpleBEV using similar resolutions.

Same Feature Resolution: In addition to input resolution, we also consider
feature map resolution. By this, we refer to the resolution of fi as introduced in
Section 3.2, which is the output of the backbone. Different backbones operate
with different strides, i.e. the downsampling ratio of the final feature map. A
backbone with a lower stride is expected to be advantageous [15], as it can
better preserve the details of spatial information. Specifically, the SimpleBEV
downsamples the image to 1/8th of the original input resolution, while DINOv2
downsamples to 1/14th due to patch size. Considering the same feature resolution
of 28× 50, the adapted ViT-L outperforms SimpleBEV by a significant margin
of 5.3 IoU (A vs. F). This indicates that the adapted DINOv2 backbone can
preserve spatial information more efficiently.

Moreover, increasing the feature resolution consistently improves performance,
as expected, by providing more accurate and dense interpolation among features.
For instance, raising the resolution from 16× 28 to 28× 50 results in a 4.2 mIoU
increase (D vs. F). Additionally, a further resolution increase to 32× 56 yields a
slight improvement, raising the mIoU from 47.6 to 47.7 (F vs. G).

Number of Updates: We chose the DINOv2 ViT-L model for convergence
experiments due to its large scale, making it ideal for assessing convergence
efficiency. The performance of DINOv2 ViT-L shows a drop of 0.2 IoU when
trained only for one-third of the total iterations (D vs. E). In contrast, ViT-L
not only surpasses SimpleBEV but does so even with fewer training iterations,
given the same input resolution (A vs. E) and the same feature resolution (A vs.
F). These results indicate that DINOv2 adaptation can converge quickly, and
shorter training times have minimal impact on performance.

3 The input resolution for ViTs should be divisible by the patch size, which is 14 in the
case of DINOv2. Therefore, we use the closest multiples of 14 to match the target
resolution.
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Table 2: Training Method and Pa-
rameter Efficiency. This table shows the
results of different weight update strategies
with the corresponding number of learn-
able parameters. Note that there are addi-
tional 5M parameters for the decoder.

Backbone Method #Params mIoU

ResNet-101 - 37M 42.3

ViT-B Frozen 0 34.3
ViT-B Fine-tune 86M 41.5
ViT-B LoRA 1M 42.3
ViT-L LoRA 3M 43.4

Fig. 3: Varying the Rank of LoRA.
This plot illustrates the effect of in-
creasing the LoRA rank (in log scale)
on the performance, with rank 0 repre-
senting a frozen backbone.

4.3 Robustness Evaluation

In Figure 1, we present a robustness analysis comparing the SimpleBEV baseline
with our two adaptation variants, ViT-B and ViT-L. We evaluate the models
under various corruptions from the nuScenes-C dataset and report their perfor-
mance separately to assess how each model handles different types of corruptions.
For a fair comparison, all models are trained at similar resolutions: 224×400 for
SimpleBEV and 224× 392 for the ViT backbones, as discussed in Section 4.2.

In Figure 1a, the performance of all methods is normalized based on the best-
performing model for each type of corruption. For color quantization, frame loss,
and camera crash, all methods perform similarly. However, the ViT-L adaptation
significantly outperforms other methods in most corruption types, surpassing
SimpleBEV by at least 20%, with ViT-B also showing strong results. The dif-
ference is particularly pronounced in the case of motion blur, where SimpleBEV
operates at only 40% of the ViT-L adaptation’s performance.

Figure 1b illustrate the performance drop of each model relative to its perfor-
mance on clean data. This figure highlights the relative decline in performance for
each model when exposed to various corruptions. As seen in the previous analy-
sis, the ViT-B and ViT-L adaptations exhibit less performance degradation com-
pared to SimpleBEV. Excluding the camera crash and frame loss scenarios, the
ViT-L adaptation consistently maintains its performance, never dropping below
60% of its clean performance, with degradation of less than 20% for brightness,
fog, and quantization. For the ViT-B adaptation, the threshold is around 45%.
In contrast, SimpleBEV struggles to maintain its performance, with drops below
40% in motion blur conditions and below 30% in darkness. Overall, the DINOv2
adaptations demonstrate greater robustness than SimpleBEV in six out of eight
corruption types and are comparable in the remaining two, camera crash and
frame loss, highlighting the superior robustness of the adaptation approach. This
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finding underscores the value of exploring foundational models like DINOv2 for
enhancing robustness in BEV perception tasks.

4.4 Ablation Study

Training Method: To highlight the impact of LoRA, we conducted experi-
ments with the ViT-B DINOv2 adaptation across three configurations, as shown
in Table 2: i) Frozen, where only the decoder (with 5M parameters) is trained and
no additional learnable parameters are introduced, i.e. no updates to the back-
bone; ii) Fine-tuning, where all 86M parameters of the ViT-B DINOv2 backbone
are updated; and iii) LoRA, where a small set of parameters is learned within
the attention layers of the backbone.

The experiments reveal that, while the frozen model demonstrates a decent
zero-shot representation performance, it significantly lags behind SimpleBEV
(34.3 vs. 42.3). Fine-tuning the entire backbone offers improved results but de-
mands significant computational resources due to the large number of learnable
parameters (86M). In contrast, the LoRA configuration, which adds just 1M pa-
rameters to the decoder, achieves results that are on par with (ViT-B; 42.3) or
even superior (ViT-L; 43.4) to SimpleBEV (42.3). This is achieved by updating
only 1.12% of the parameters in ViT-B and 2.70% in ViT-L. Notably, LoRA out-
performs the full fine-tuning by 0.8 points, showcasing its parameter efficiency
and effectiveness in enhancing the performance.

Rank of LoRA: We experimented by varying the rank of adaptation in LoRA
as shown in Figure 3. Rank essentially controls the capacity of the adaptation,
with higher ranks providing more parameters for fine-tuning. Higher ranks can
capture more complex relationships and lead to better performance, while po-
tentially losing the information from pre-training. A rank of 0 corresponds to
no updates to the backbone, i.e. frozen backbone. We found that increasing the
rank leads to consistent improvements up to a certain point, specifically up to
rank 32. However, increasing the rank from 32 to 64 results in a performance
decrease of 0.1. A potential reason for this is the loss of the inductive bias of
DINOv2, due to the larger updates on the attention weights. This indicates that
rank 32 strikes an optimal balance between adapting the features to the task
and preserving the valuable information acquired during pre-training.

5 Conclusion

We investigated the effectiveness of DINOv2 with Low Rank Adaptation (LoRA)
for BEV segmentation on nuScenes. We first showed comparable results to Sim-
pleBEV with a smaller backbone in the clean setting. By scaling up the model or
the input and feature resolutions, we could obtain significant improvements com-
pared to the baseline performance. Our experiments on nuScenes with corrup-
tions (nuScenes-C) show increased robustness to various corruptions, even with
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a shorter training time. These results justify our motivation to build on general-
purpose features from large foundation models for improving BEV segmentation.
Our approach requires updating significantly fewer parameters compared to full
fine-tuning or the supervised baseline.

Our analysis is currently limited to DINOv2 and does not explore the perfor-
mance of other promising 3D-aware foundation models, such as Stable Diffusion.
Comparing different foundation models for BEV presents an interesting direc-
tion for further research, offering more insights about how to incorporate these
models into BEV frameworks.
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