
A New Dataset for Monocular Depth Estimation
Under Viewpoint Shifts

Aurel Pjetri1,2 , Stefano Caprasecca1 , Leonardo Taccari1 , Matteo
Simoncini1 , Henrique Pineiro Monteagudo1,3 , Walter Wallace1, Douglas

Coimbra de Andrade4⋆ , Francesco Sambo1 , and Andrew David Bagdanov1

1 Verizon Connect Research, Florence, Italy {aurel.pjetri, stefano.caprasecca,
leonardo.taccari, matteo.simoncini, francesco.sambo,

wally.walter}@verizonconnect.com
2 Department of Information Engineering, University of Florence, Florence, Italy

andrew.bagdanov@unifi.it
3 University of Bologna, Bologna, Italy henrique.pineiro2@unibo.it

4 SENAI Institute of Innovation, Rio de Janeiro, Brazil
douglas.coimbra@sc.senai.br

Abstract. Monocular depth estimation is a critical task for autonomous
driving and many other computer vision applications. While significant
progress has been made in this field, the effects of viewpoint shifts on
depth estimation models remain largely underexplored. This paper in-
troduces a novel dataset and evaluation methodology to quantify the im-
pact of different camera positions and orientations on monocular depth
estimation performance. We propose a ground truth strategy based on
homography estimation and object detection, eliminating the need for
expensive lidar sensors. We collect a diverse dataset of road scenes from
multiple viewpoints and use it to assess the robustness of a modern depth
estimation model to geometric shifts. After assessing the validity of our
strategy on a public dataset, we provide valuable insights into the lim-
itations of current models and highlight the importance of considering
viewpoint variations in real-world applications.

Keywords: Dataset · Domain Shift · Monocular Depth Estimation

1 Introduction

Recent years have seen significant advancements in the machine learning commu-
nity, with transformers in particular achieving state-of-the-art results on multiple
tasks [6, 22]. Autonomous driving (AD) has been receiving more and more at-
tention from the public with different forms of it being regulated and approved
for public implementations, from fully autonomous robotaxis [3] to consumer
vehicles with different levels of autonomy [1,2]. Perception, and computer vision
in particular, is the most important building block for these technologies. A fun-
damental task for the perception of the surroundings is depth estimation. It is
⋆ Work done while at Verizon Connect Research, Florence, Italy.
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well known that such tasks are susceptible to out-of-distribution samples, from
adverse weather and light conditions to image corruptions [16,19,24].

Another distribution shift that is common in this context is viewpoint change,
either caused by vehicles with different sizes or by variations in the camera in-
stallation. A few works have recently started to shed light on the effect of such
shifts on related tasks like birds-eye-view semantic segmentation and object de-
tection [15, 23]. However, quantification of such an effect on monocular depth
estimators remains heavily underexplored, with only [21] giving some insights
on the behaviours of these models. This could be mainly due to the lack of
annotated data and the cost and technical difficulties associated with it. Tradi-
tionally, this kind of task is performed using measurements from expensive lidar
sensors [5,8,26]. These sensors are not ubiquitous and require multiple layers of
post-processing, such as outlier detection and removal, data alignment, registra-
tion with other sources, and other computationally expensive steps. A possible
solution lies in the domain of synthetic data, which introduces a well-known
sim-to-real domain shift [12].

Our proposal is to remove the dependency on expensive sensors to evalu-
ate depth estimation techniques by exploiting basic geometric elements such as
homographies. We estimate a ground truth (GT) homography from an initial
calibration session that maps points from the image plane into the road plane.
We use the homography to compute distances of road objects that serve as GT
for our evaluation. As a matter of fact, our proposal is to use object distance es-
timation as a proxy task for traditional depth evaluation. We are aware that this
approach is accurate only if the geometry of the road plane is in line with the one
measured during calibration, otherwise introducing an intrinsic error. However,
we empirically show that such an error is considerably limited on planar geogra-
phies such as the one from the KITTI dataset [8]. Furthermore, experiments on
KITTI show that our proxy task provides evaluations that are very close to the
ones observed using lidar GT.

Our strategy enabled us to collect a large dataset of video sequences, recorded
from different known and calibrated camera settings. We use such data to high-
light the impact of the different viewpoint shifts on a modern depth estimator
and give insights on their effects on the scale perceived by the model. The dataset
can be accessed at kaggle.com/datasets/aurelpjetri/viewpointdepth.

To summarize, the main contributions of this work are:

– we propose a new ground truth strategy based on classical computer vision
techniques, which can be used to replace expensive sensors for object distance
estimation;

– we discuss in-depth the limitations of the proposed approach and empirically
show its effectiveness on a public annotated dataset;

– we release a new dataset of road scenes collected from multiple viewpoints;
– we quantify the effects of different viewpoints on the performance of a mod-

ern monocular depth estimation model.

The remainder of this paper is structured as follows: Sec. 2 presents the most
relevant works in this context, Sec. 3 outlines the proposed ground truth and

https://www.kaggle.com/datasets/aurelpjetri/viewpointdepth
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evaluation strategy, Sec. 4 presents the details of the collected dataset, Sec. 5
describes the different experiments conducted and Sec. 6 draws final conclusions.

2 Related Work

In this section we review work from the recent literature most related to our
contributions.

2.1 Road Scene Depth Datasets

Many datasets have been proposed to facilitate research on 3D perception for
autonomous driving or, in general, for road scene analysis. The KITTI dataset
was a pioneering work in this context, in which a test vehicle collected driving
data from multiple cameras and sensors, including a laser scanner for distance
ground truth [8]. The authors collected different scenes driving in an urban
environment in Germany. Inspired by KITTI, other datasets have been released
by expanding the variety of geographical regions and scenes collected. Examples
are Nuscenes [5] and Waymo Open [20], which are larger than KITTI and cover
a wider variety of cities and scenes. Other datasets like WoodScape [26] focus on
fisheye cameras, which are not only front-facing, but also cover lateral and rear,
and are mounted on many modern cars.

All public datasets, in general, are mainly focused on capturing a variety of
scenes, weather, lighting conditions, sensors or image corruptions [16]. None of
them, however, provides a broad variety of viewpoints, as the vehicle type and
camera position are usually fixed across the whole dataset.

2.2 Self-supervised Monocular Depth Estimation

Depth estimation is a fundamental geometric task for 3D scene understanding.
Self-supervised monocular depth estimation is a particular variant of this task
that enables training networks without the use of explicit depth labels. Although
it is an ill-posed problem, since multiple 3D scenes can generate the same 2D
image, some deep learning techniques have shown good results. One of the first
proposed approaches used the pretext task of reconstructing frames in a video
sequence to force the network to learn a good depth estimation of the scene [29].
The depth network is trained alongside a pose network for the new frame to be
rendered. Given a source frame at time t and a target frame at t+ 1, each pixel
pt+1 can be back-projected to the source view using depth Dt and pose Pt+1→t

predicted by the networks:

pt ∼ KPt+1→tK
−1pt+1. (1)

In this way bilinear sampling can be used to synthesise p̂t+1 [13]. A direct com-
parison of each pixel i within each frame t for training loss can then be used [29]:

L =
∑
t

∑
i

∣∣pit − p̂it
∣∣ . (2)
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Inspired by this work, [10] introduced multiple improvements, such as the use
of a photometric error in the loss function combining L1 and SSIM [25]. The
results were impressive, not only because they made state-of-the-art, but also
given how close they were to stereo-based methods, proving the effectiveness of
this paradigm.

Over the years many works have built on top of this paradigm, implementing
more effective and modern architectures. One of the first implementations of
vision transformers [6] to tackle this problem was proposed in [28]. In particu-
lar, inspired by the MPViT architecture [17], the authors propose a Conv-stem
block for the network encoder, in which they combine convolutional blocks with
transformers. They observe that this enables modeling both local and global
information in the frame, achieving state-of-the-art at the time of its release.

2.3 Viewpoint Shift

Depth estimation under geometric shifts remains underexplored, despite being
a well-known problem. It has been tackled in the context of supervised depth
estimation by introducing a geometric embedding of the inputs and a variational
latent representation [11]. Additionally, viewpoint shifts caused by different cam-
era installations for autonomous driving have been studied [15]. In this case,
the task was bird’s eye view semantic segmentation and the dataset used was
synthetic. Moreover, a viewpoint generalization technique for object detection,
based on learning homography transformations of the input images to account
for different geometric shifts, has been proposed [23].

Finally, for the specific task of monocular depth estimation, [21] conducted
multiple experiments with the aim of understanding which depth cues are ac-
tually exploited by the models. The authors observed that vertical position of
the object is the main cue used by the models: the lower side of the vehicle
and the point where it touches the ground seem to be the main cues exploited
by models to estimate its distance. Their experiments also suggest limitations
of such models to account for camera orientation changes simulated by image
central crops and rotations.

3 Ground Truth and Evaluation Strategy

We propose to use a homography in combination with an object detector as a
ground truth source for measuring monocular depth estimation error on road
scenes. Depth estimation models are traditionally tested by directly comparing
per-pixel predictions with ground truth from expensive sensors, such as lidar,
and computing metrics such as absolute relative error:

abs-rel = 100 · 1

N

N∑
i=0

∣∣∣xi
gt − xi

pred

∣∣∣
xi
gt

. (3)

We hypothesize that comparable results can be achieved by evaluating the
models on object distance estimation, measuring the error only on road objects
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Fig. 1: (a) Manually labeled points of a parking lot pattern (source points for the ho-
mography). (b) Target plane with metric distances (target points for the homography).

instead of on the whole frame. Moreover, we observe that a homography that
maps ground points in the image to a plane with a metric reference system
can be used as distance ground truth source for points on the ground (Fig. 1).
Such projection, used in combination with an object detector, can associate a
metric distance to objects. As a matter of fact, previous studies have already
suggested that monocular depth models use the lower part of the object to de-
termine their distance [21], which further supports our strategy. This ultimately
enables experiments and research in conditions in which expensive sensors are
not available. We divide our method in three steps: calibration, object detection,
and evaluation.

3.1 Calibration

The calibration phase is the only manual step of the method. We select reference
ground points and measure their distance to the camera to construct the target
plane with a metric reference system centered in the camera (see Fig. 1), so that
for any point X = [x, y]T its distance to the camera can be computed by simply√
x2 + y2 + h2, where h is the height of the camera. This allows us to estimate

a homography mapping points in the image to points on the target plane, and
therefore to associate a metric distance to any point in the image, provided that
it lies on the ground. Given a point on the image x = [u, v]T , we project it to X
in the target plane:

[X,Y,W ]T = H · [u, v, 1]T ⇒ X = [X/W,Y/W ]T = [x, y]T . (4)

3.2 Object Detection

We use an object detector to detect the relevant road objects in the image:
car, truck, bus, motorcycle, bicycle and person. Given a bounding box with
coordinates (x1, y1) and (x2, y2), we assume that all objects lie on the ground,
and therefore we define their distance as that of the center of the lower side of
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Fig. 2: (a) Bounding box of a vehicle with the point X̂ used for GT distance. (b) Depth
prediction with bounding box. The original box was resized to α = 75% (dashed line)
to extract the percentile β of the prediction.

the box X̂ = ((x2−x1)/2, y2) (Fig. 2(a)). By projecting this point using Eq. (4),
we are able to associate a metric distance to each object and use it as ground
truth for the model evaluation in the next step.

3.3 Evaluation

To measure the performance of a depth estimation model, we only consider
road objects. Therefore, we again use the bounding box information from the
object detector and use the depth estimation model to infer the dense distance
of the points within the boxes. We then select a percentile β from the estimated
distances and use that as the inferred object distance. Moreover, to account for
inaccuracies we resize bounding boxes to a certain fraction α of the original
dimension before collecting inferred depths, as shown in Fig. 2(b). α and β
are treated as hyperparameters that we select in the experimental phase (see
Sec. 5.1).

4 Dataset

The aim of this dataset is to measure the effects of different viewpoint shifts
on monocular depth estimation models. We collected the data using a 2023
RAM Promaster 2500 cargo van located in Alpharetta (Georgia), United States.
Between March 2023 and February 2024, we installed two identical dashcams in
the windshield of the vehicle. The first camera, to which we refer as base, was
fixed in an ideal position for a dashcam, i.e., close to the rear-view mirror at
a height of 177.8 cm with an orientation of 0° roll, 0° yaw and -4° pitch (later
moved to 6° pitch as shown in Tab. 1). Example frames recorded from these
positions are reported in Fig. 4.

The second camera, which we identify as shifted, was instead used to simulate
different viewpoint shifts and was moved on a weekly basis. Table 1 and Fig. 3
show the different combinations of positions and orientations of the cameras
during the collection period. For the camera position in the windshield (X, Y,
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Fig. 3: (a) Reference system on the windshield centered on the base camera, where the
Z axis orientation is in the direction of movement of the vehicle. The red dots indicate
the different positions of the shifted camera. (b) Axes and rotation reference systems
following the right-hand rule.

Z) we used the reference system illustrated in Fig. 3(a) centered in the position
of the base camera.

It is worth noting that the yaw angle, present in the camera when installed
on the left side (lines 6–9 in Tab. 1), was implicitly generated by the curvature
of the windshield itself. Roll angles were computed by manually measuring the
camera inclination on the windshield. On the other hand, we measured pitch
and yaw angles for each viewpoint by manually labeling the horizontal vanishing
point from the straight lines on the road (vu, vv), and computing the angle given
the focal length (fx, fy) of the camera and its principal point (cu, cv):

pitch =
180

π
arctan

(
cv − vv

fy

)
(5)

yaw =
180

π
arctan

(
cu − vu

fx

)
(6)

A total of 10 different viewpoints were collected. For each viewpoint we re-
lease 3 videos of 10 minutes each from different scenes. Given the long time range
in which the videos are distributed, we manually selected samples to represent a
similar distribution of suburban areas in non-adverse weather and at day-time as
shown in Figs. 4 and 5. Dashcams recorded at an average of 30 frames per second
in 720p MP4 format and with a 150° diagonal field of view. We down-sampled
the data at 10 fps and extracted the frames undistorted in JPEG format, with
a quality factor of 92 and 4:2:0 chroma sub-sampling. This resulted in a total of
360K frames.

Note that although the two cameras are simultaneously recording the same
scene, no synchronization mechanism was implemented. This can result in the
two recordings being shifted by a variable number of frames. Finally, to foster fur-
ther research, we also release GPS points and accelerometer data at 1 and 100 Hz,
respectively.
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Table 1: Combinations of different positions in the windshield and orientation angles
(in degrees). X, Y, and Z represent the position of the camera in the windshield (in cen-
timeters). Objects represents the number of objects detected in the associated frames.
For each row we also present the pitch the base camera had during the recording of
that viewpoint and he associated objects.

Shifted Dashcam Base Dashcam
ID X Y Z Pitch Yaw Roll Objects Pitch Objects

0 0 30 0 -4 0.0 0 5291 -4 3026

1 5 0 0 -10 0.0 0 4325 6 4146
2 5 0 0 16 0.0 0 5004 6 5458
3 5 0 0 -4 2.5 0 2906 6 2824
4 5 0 0 -4 5.0 0 2281 6 2219
5 5 0 0 16 5.0 0 3068 6 4207

6 -65 -5 -10 5 0.0 -5 4425 6 3916
7 -65 -5 -10 16 0.0 -5 3537 6 3759

8 -65 30 -10 5 0.0 -5 3465 6 3278
9 -65 30 -10 16 0.0 -5 3712 6 4413

(a) (b)

Fig. 4: (a) Example of base camera with -4° of pitch. (b) Example of base camera with
6° of pitch.

4.1 Object Detection

We used a Yolov5 object detector [14], trained on a combination of BDD100K [27]
and a private dataset collected with same camera model of this work. We do not
expect the object detector to be affected by the viewpoint shifts as both datasets
used for training have non-fixed viewpoints. Moreover, from a qualitative analy-
sis, we observe that the combinations in Tab. 1 do not induce a significant change
in appearance of the objects. This is also confirmed by smaller-scale experiments
that showed no evident change in mean average precision between the different
viewpoints.

To exclude problematic cases, we filter out all the boxes with a confidence
level lower than 0.5 and the lower side above the vanishing point of the camera.
Furthermore, we remove occluded objects by detecting overlapping boxes and
only keeping the lowest ones in the image. Finally, we filter out small objects
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with specific area thresholds for each class: 3000 pixels2 for all vehicles, 1000
pixels2 for person and bicycle, and 1500 pixels2 for motorcycle. Both raw and
filtered detections are released with the dataset.

4.2 Homography

As mentioned in Sec. 3, in order to be able to associate a ground truth distance
to road objects, we estimated homographies mapping image ground points to a
target plane with metric reference system (Fig. 1) that we release alongside the
dataset.

Base Camera Homography We exploited the regular pattern of an empty
parking lot in order to have several reference points and minimize manual mea-
surements. In Fig. 1 we show the ground points manually labeled on the image
and the corresponding points on a plane with metric coordinates. The homog-
raphy was estimated using all the provided points with a simple least-squares
scheme from the OpenCV [4] Python library.

Shifted Camera Homography We selected a set of corresponding points be-
tween the cameras after manually synchronizing a portion of the two videos. Us-
ing the base camera homography, we projected the points from the base camera
to the target plane and used the corresponding points from the shifted camera to
estimate the needed homography. This operation was repeated for each position.

5 Experimental Results

In this section we report the results of our experiments. In particular, we validate
our method as ground truth source by comparing it with lidar readings on the
KITTI dataset in Sec. 5.1. Then, in Sec. 5.2, we use our ground truth method
to measure the effects of the different viewpoints on a self-supervised monocular
depth estimator.

In particular, for all our experiments we use the MonoViT depth estimation
model [28], which is a modern architecture which yields state-of-the-art perfor-
mance on the RoboDepth challenge on robustness against adverse weather, light,
and sensor corruption [16]. Despite being a challenge on simulated weather con-
ditions and image degradation, we thought it would be a promising candidate
for our study.

5.1 Homography Evaluation on KITTI

The goal of this experiment is to assess the margin of error of our geometry-based
strategy by comparing it with lidar ground truth. We take the MonoViT model
trained on the KITTI dataset [8] for self-supervised monocular depth estimation
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and measure its absolute relative error (Eq. (3)) using two ground truth sources:
laser scans and our strategy.

As a first step we estimate the homography by exploiting the provided cam-
era projection matrix. We select a set of reference points in the target plane with
metric reference system, project them to the image plane and estimate the ho-
mography with the same method used in our data. We also exploit the provided
object labels [9] and filter out occluded and partial objects.

We perform inference with MonoViT on the test set from the Eigen split [7].
Monocular depth estimators give predictions with an unknown scale factor and
need to be manually scaled to metric depth using ground truth. Traditionally, a
median scaling is performed at an image level, i.e. for each image j predictions
are multiplied by sj = median(Xj

gt)/median(Xj
pred). However, this can be unfair

towards other stereo-based or supervised methods that do not use ground truth
information at test time, as highlighted by [10]. Therefore, in these experiments
we compute a single scale multiplier by computing medians across the whole test
set. We replicate the same in our strategy by computing medians of homography
GTs and prediction percentiles extracted from the boxes.

To find the best parameters for bounding box resize and percentile of the
prediction inside the box (α and β respectively), we performed a grid search over
the two parameters and found that the best performance is given by α = 0.75
and β = 75. With these parameters we measured an abs-rel of 16.8 with our
homography and 13.6 with laser, giving a difference of 3.22 points.

Moreover, for the task of object distance estimation, we compute Spearman
rank correlation scores between laser readings and the homography. To associate
a laser distance to an object, we take the sensor reading of the middle point of
the lower side of the box. What we observe is that the two sources of ground
truth have a high correlation with a Spearman score of 0.97.

Road Geometry These results also suggest that the intrinsic error introduced
by the use of a homography, with its strong assumptions of flat ground surface,
is limited. To further verify this, we also computed statistics about road inclina-
tion in KITTI’s test set exploiting the provided GPS signals. As a matter of fact,
using altitude and speed, we are able to compute the road’s slope in the trav-
eled segment. In particular we sample GPS points at 1Hz and keep only those
where the horizontal displacement resulted in more that 1m. We observe that
the average of the absolute values of the angles is 1.2°, median is 0.4° and 99th
percentile is 21.1°. The same statistics on our dataset are: 1.8°, 0°, 19.1° respec-
tively. Moreover, the homography’s assumption is broken only in the case where
there is a change in the road geometry, therefore if we compute the number of
times the GPS altitude changes of more than 1m (the granularity of our GPS
signal), we observe that in KITTI it happens in 1.46% of the points, which is
similar to the 1.99% in our dataset. These measurements indicate that the road
geometry of the two datasets is similar and encourage us to use this strategy on
our dataset expecting an intrinsic error analogous to the one on KITTI.
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5.2 Viewpoint Shift Effects

Our aim is to find what are the most downgrading shifts among the different
positions that we collected. We build a training set from additional 3 videos of
the base camera with -4° pitch at 10 fps and exploit the rest of the dataset as
test set at 1 fps to measure the effects of different viewpoints on MonoViT. We
run our experiments using MonoViT pre-trained on KITTI with a resolution of
1024x320. To fit our images in the network, we centrally crop our frames from
720 to 704, ending up with frames of 1280x704 pixels.

We first ran a zero-shot experiment on both cameras and all the positions.
Then we fine-tuned the model on the training set using an Nvidia L4 GPU
with 24GB, with a batch size of 2 for 21 epochs. For the optimization we used
AdamW [18] with an initial learning rate of 10−9 for the depth encoder and 10−8

for all the other parts of the networks, and exponential decay.
As mentioned in Sec. 5.1, predictions need to be scaled to metric distances

for evaluation. However, in order to highlight the effects of the shifts on the scale
perceived by the model, we choose to use the same scaling factor for all positions.
This factor is computed exploiting all the objects O in the training set T , both
in the zero-shot and fine-tuning experiments:

s =
median

(
gt(Ok)

)
median (pred(Ok))

, ∀Ok ∈ T. (7)

Table 2 gives the absolute relative errors of the model in the different po-
sitions, both in zero-shot and fine-tuned inference. To isolate the effect of the
viewpoint, for each position, we test on footage from the same scene recorded
by the two cameras simultaneously, and compute the difference in performance
between shifted (S) and base (B) camera. The rows with the highest difference
between the S and B cameras correspond to the installation positions with the
strongest performance degradation.

From the zero-shot results, we observe that the two most affected positions
are 7 and 5 (in decreasing order). The combination of pitch and yaw has the most
degrading effect, leading to more than doubling the error. Pitch and roll have
also the effect of doubling the error of the model. Fine-tuning reduces the error
in general, however the degrading effects of the 2 worst positions remain almost
unchanged. In general we observe that pure rotations or translations don’t affect
the model as much as a combination of them, with some more impactful than
others.

Scale Effect Given the single scale factor used for all positions, we believe that
the main effect of viewpoint shifts is the distortion of the scale perceived by the
model, which could not have been detected if per-image or per-position scaling
was used. In order to better investigate this phenomenon, we compute scaling
factors as in Eq. (7) on the different positions separately. Tab. 3 reports the
computed scales on the zero-shot experiment, along with the error degradation
from Tab. 2. A correlation between performance degradation and perceived scale



12 A. Pjetri et al.

Table 2: Absolute relative error of MonoViT in different camera positions for zero-
shot and fine-tuned networks. We report errors on the shifted (S) and base (B) cameras
corresponding to the same scene. †Base camera with pitch -4.0°, all other rows are with
base camera at pitch 6°. The top 2 largest degradations are in bold, the second 2 are
underlined.

Shifted Dashcam Position Zero-shot Fine-tuned
ID X Y Z Pitch Roll Yaw B S S-B B S S-B

0 0 30 0 -4 0 0 18.3† 19.4 1.1 16.9† 17.3 0.4

1 5 0 0 -10 0 0 19.4 29.0 9.6 18.0 22.9 5.0
2 5 0 0 16 0 0 17.2 26.1 8.8 17.0 21.1 4.1
3 5 0 0 -4 2.5 0 18.5 21.4 2.9 15.1 16.4 1.2
4 5 0 0 -4 5 0 20.9 21.3 0.4 17.2 17.7 0.5
5 5 0 0 16 5 0 20.5 40.4 19.9 19.7 35.8 16.2

6 -65 -5 -10 5 0 -5 19.6 24.0 4.4 16.5 18.1 1.6
7 -65 -5 -10 16 0 -5 19.0 47.5 28.5 17.7 44.1 26.4

8 -65 30 -10 5 0 -5 18.5 23.6 5.1 17.3 21.2 4.0
9 -65 30 -10 16 0 -5 19.2 25.9 6.6 15.1 17.6 2.5

can be seen. In particular, we observe that higher pitch angles correspond to
smaller scales perceived by the model (and therefore a bigger scaling factor
necessary to align to GT). In the same way, lower pitch angles generate bigger
scales perceived. This observation seems to confirm that indeed depth models use
vertical position as depth cue for objects as stated by [21]. In general this suggests
that adaptation methods tackling this problem should focus on automatic scaling
of models at inference time.

6 Conclusion

In this paper, we addressed the underexplored problem of viewpoint shifts in
monocular depth estimation for camera systems. We introduced a novel dataset
collected using two dashcams in various positions and orientations. Our method
leverages homography estimation and object detection as a cost-effective alter-
native to expensive lidar sensors for ground truth depth generation. We validated
our approach on the KITTI dataset, demonstrating a high correlation (Spear-
man score of 0.97) with lidar measurements and measuring an absolute relative
error comparable to the one using lidar. We showed how the intuitive limita-
tions relative to the road geometry of the proposed approach are not impactful
in practice on a public dataset like KITTI, and, by extension being the two
geometries similar, to our dataset.

Using the MonoViT model, we quantified the effects of viewpoint shifts on
depth estimation performance. Our experiments revealed that certain camera
positions significantly degrade accuracy. In particular combinations of pitch and
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Table 3: Scale perceived by the network in different positions. Scale B and Scale S are
the scales perceived in the base and shifted cameras. Scale S-B is computed as Scale S
- Scale B to highlight the effect of the viewpoint shift. The difference in error (Error
S-B) is also reported from Tab. 2 for reference. The top 2 largest degradations are in
bold, the second 2 are underlined.

Shifted Dashcam Position Zero-shot
ID X Y Z Pitch Roll Yaw Error S-B Scale B Scale S Scale S-B

0 0 30 0 -4 0.0 0 1.1 3116 3064 -52

1 5 0 0 -10 0.0 0 9.6 3359 2669 -689
2 5 0 0 16 0.0 0 8.8 3167 4313 1145
3 5 0 0 -4 2.5 0 2.9 3310 3086 -224
4 5 0 0 -4 5.0 0 0.4 3580 3327 -252
5 5 0 0 16 5.0 0 19.9 3330 5254 1923

6 -65 -5 -10 5 0.0 -5 4.4 3315 3034 -280
7 -65 -5 -10 16 0.0 -5 28.5 3310 6133 2822

8 -65 30 -10 5 0.0 -5 5.1 3158 2706 -451
9 -65 30 -10 16 0.0 -5 6.6 3397 3970 572

roll and pitch and yaw have the most degrading effects. As a matter of fact,
the most impactful shift induces an increased error of above 26 points in both
zero-shot and fine tuning, which is more than double from the base position.
Moreover, a study on inference scale of the model highlighted that camera pitch
directly affects perceived scale and that, in general, performance degradation is
correlated to scale distortion, suggesting that indeed automatic scaling of depth
models at inference time could help mitigate the problem and thus be a promising
research direction for generalization.

These results highlight the vulnerability of current depth estimation models
to geometric shifts, particularly combinations of pitch and yaw angles. Fine
tuning on the base camera data improved overall performance but did not fully
mitigate the effects of viewpoint changes.

Our work provides insight into the limitations of current self-supervised
monocular depth estimation models and emphasizes the importance of consider-
ing viewpoint variations in real-world applications. Future research should focus
on developing more robust models that can generalize across different view-
points, potentially by incorporating our dataset and evaluation methodology
into training and testing pipelines. Additionally, expanding the dataset to in-
clude different vehicle types, camera models and more viewpoints would further
enhance its utility.
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Fig. 5: Example frames from the shifted camera positions following the ID in Tab. 1.
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