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Abstract. High-Definition (HD) maps are pivotal to autopilot navi-
gation. Integrating the capability of lightweight HD map construction
at runtime into a self-driving system recently emerges as a promising
direction. In this surge, vision-only perception stands out, as a cam-
era rig can still perceive the stereo information, let alone its appealing
signature of portability and economy. The latest MapTR architecture
solves the online HD map construction task in an end-to-end fashion
but its potential is yet to be explored. In this work, we present a full-
scale upgrade of MapTR and propose MapNeXt, the next generation
of HD map learning architecture, delivering major contributions from
the model training and scaling perspectives. After shedding light on the
training dynamics of MapTR and exploiting the supervision from map el-
ements thoroughly, MapNeXt-Tiny raises the mAP of MapTR-Tiny from
49.0% to 54.8%, without any architectural modifications. Enjoying the
fruit of map segmentation pre-training, MapNeXt-Base further lifts the
mAP up to 63.9% that has already outperformed the prior art, a multi-
modality MapTR, by 1.4% while being ∼ 1.8× faster. Towards pushing
the performance frontier to the next level, we draw two conclusions on
practical model scaling: increased query favors a larger decoder network
for adequate digestion; a large backbone steadily promotes the final accu-
racy without bells and whistles. Building upon these two rules of thumb,
MapNeXt-Huge achieves state-of-the-art performance on the challeng-
ing nuScenes benchmark. Specifically, we push the mapless vision-only
single-model performance to be over 78% for the first time, exceeding the
best model from existing methods by 16%. This work was done before
the beginning of 2023 and we were honored as the runner-up of track 2
in the VCAD CVPR 2023 Workshop’s challenge.

Keywords: BEV perception · Online HD Map Construction · Autonomous
Driving

1 Introduction

Autonomous driving is undoubtedly an attractive and challenging field nowa-
days, where perceiving the environment surrounding the ego-vehicle both accu-
rately and holistically is a crucial pillar. Thus, High-Definition (HD) map with
abundant geometric and semantic information is an indispensable ingredient for
autopilot. Until recently, offline HD maps constructed with SLAM-based meth-
ods [52] remain the mainstay of the self-driving community. Though precise and
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reliable, the global HD maps not only call for massive labor for annotation but
also become expensive to maintain once the real-world environment changes.
Not surprisingly, it becomes a trend among the industrial enterprises to pile into
“Mapless Driving”. That is to say, the ever-increasing focus has been shifted to-
wards building a local HD map on the fly with onboard sensory observations,
providing great scalability and timeliness. The rationality of this choice is further
backed by the fact that humans could already infer the surrounding scene ge-
ometry and semantics straightforwardly based on visual cues, without referring
to a map.

Regarding vehicle-mounted sensors, LiDAR is adept at capturing geometry
information in the scene, but its return lacks dense details and texture patterns
compared to high-resolution cameras. In addition, from the perspective of in-
dustry, considering the bulkiness and costliness of LiDAR, mass production of
LiDAR-equipped automobiles is hardly accessible. In contrast, the compactness
and popularity of cameras render vision-only perception desiderata. Therefore in
this work, we prefer to embrace the surrounding-view cameras as the only input
source for perception on the vehicular platforms.

Some early attempts formulate online HD map construction as per-pixel pre-
diction of a rasterized map. As a representative work, HDMapNet [21] dissects
the entire problem into several sub-tasks, where the principal one is Bird’s Eye
View (BEV) semantic segmentation while the rest auxiliary tasks supplement
instance information by means of complicated post-processing. Virtually, a map
element is desired to be defined in a vectorized format, i.e., an ordered set of
points, that can be readily consumed by subsequent motion forecasting and plan-
ning modules. In this spirit, VectorMapNet [26] evolves the task in hand from
dense pixel-level segmentation to sparse instance-level detection, of which the
detection head features DETR [5] style, characterizing an end-to-end pipeline.
However, each vectorized map element is deemed to be in a point sequence form
and such an ordered output need to be arranged by an additional auto-regressive
model, inevitably dragging down the inference speed. Although modeling online
HD map construction as a sparse detection task is a milestone towards simplicity
and efficiency, the remaining annoyance is how to elegantly cope with the or-
der of output points. MapTR [23] stretches this line of research, giving birth to
a completely streamlined architecture with parallelized output. Meanwhile, the
determination of point order is sidestepped by creating a bunch of permutation-
equivalent ground truths to match prediction outputs in diverse orders. The
permutations are fulfilled by a collection of geometrical transformations, such
as flipping and shifting, which could get rid of the matching ambiguity between
many potential network predictions and one ground truth with the specific point
order, during both model optimization and evaluation. Consequently, MapTR
not only extends the intriguing property of end-to-end execution through to
the entire neural network, but also demonstrates performance superiority over
precedent models.

We meticulously study the MapTR architecture and suggest that there exist
two concerns with respect to its performance. On the one hand, the reasons
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behind its compelling performance are under-explored. On the other hand, albeit
with a breakthrough, the overall performance of MapTR is still unpleasant in
real-world applications to date. For these two concerns, we mainly resolve them
from the perspective of model training and scaling :

Training. We provide an in-depth analysis of the advanced mechanism of
MapTR through the lens of training dynamics and reveal that its improved per-
formance is inherently attributed to augmented ground truths. Unfortunately,
this root cause is less publicized by the authors of MapTR. Since the bipartite
matching policy from DETR marries a unique prediction among a large pool of
(thousands of) queries to one map element, scarce supervision signal is prop-
agated back to the neural network. Augmenting ground truths overcomes the
drawbacks of sparse supervision, which is unintentionally materialized in MapTR
by equivalent permutations of ground truths. On top of that, we disclose new
chances of augmenting the query to permit map elements to be supervised more
often, substantially ameliorating the performance. Besides our advance in the
map element decoder, we also underscore the vital role of proper domain knowl-
edge transfer during image encoder pre-training. Note that all the above findings
are associated with model training schedules, that could plug and play for on-
line HD map construction, without introducing any additional computation cost
during inference.

Scaling. Foundation models lately make inroads into the vision domain and
reigned supreme [29, 51]. For online HD map construction exceptionally, to our
best knowledge, we are the first to scale up the model to probe the performance
ceiling. Since efficiency is always the first-class citizen in the self-driving king-
dom, we also keep in mind that the large-scale architecture design should be
still friendly to parallel computing chips. For instance, we shall stick to pure
convolution-based image encoders and expand the decoder through the dimen-
sion of network width.

To summarize, we present an omni-scale reloading of the MapTR architec-
ture ranging from image encoder to map element decoder based on improved
training and scaling techniques. The proposed architecture is fittingly dubbed
as MapNeXt. Our core contributions in this work are threefold:
1. Targeted at onboard models, we propose improved training techniques in-

cluding augmenting the query for map element decoder and preparing ded-
icated pre-training for image encoder, bringing about striking performance
gains without adding any inference budget.

2. Targeted at offboard models, we offer golden guidelines on model scaling,
such as matching the decoder capacity with the quantity of decoding query.
We also unveil the feasibility of translating the rapid development of modern
image backbones to online HD map learning for the first time.

3. On the competitive nuScenes benchmark, our real-time MapNeXt-Tiny im-
proves over the strong MapTR baseline by 5% mAP or so, running even
slightly faster; our non-real-time single-modal MapNeXt-Huge sets the new
state-of-the-art with a 78.5 mAP, beating the known best multi-modal model
by 16 mAP.
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We anticipate that our MapNeXt could serve as a promising foundation,
prompting more researchers to devote themselves to the arena of online vector-
ized HD map construction.

2 Related Work

2.1 Vision-only Obstacle Perception for Autopilot

Moving/static obstacle perception in autonomous driving is closely related to
the techniques of 3D object detection in the field of computer vision. Only with
images as the input signal, there mainly exist two branches of research, one is
the bottom-up approach, the other is the top-down approach. The former one is
represented by CaDDN [38] and BEVDet [16] which maintain the information
flow inside the neural network naturally in a feed-forward fashion: extracting 2D
image features, explicitly lifting them to the BEV space, and detecting objects
in this space. During the process, they mostly employ well-developed existing
components (image backbone [13, 24] and 3D object detection head [19, 50]),
except the specialized PV-to-BEV view transformation module [37]. The latter
one is represented by DETR3D [45] and PETR [27] which cast representative
queries as the detected objects and then trace back to the corresponding image
features. Specifically, they adopt object-centric queries to aggregate the latent
features in the multi-view image space according to the camera intrinsics and
extrinsics. Next, these queries are refined in a cascade style with a stack of
Transformer layers for the final classification and localization tasks. In general,
online HD map construction is resolved similarly to instance detection with BEV
representation learning, but the details can be very different.

2.2 Vision-only Map Perception for Autopilot

Static element perception in autonomous driving partly refers to semantic map
element prediction, a.k.a., online HD map construction. Borrowing the lessons
from recent obstacle perception practices, map perception is also established
in the BEV space using only vehicle-mounted camera sensors. The online HD
Map construction problem is initially solved in a two-step paradigm. For ex-
ample, the pioneering HDMapNet [21] predicts pixel-wise semantic categories,
instance embedding, and direction simultaneously. Heuristic post-processing is
necessitated to obtain structural information from the individual dense predic-
tion results. Differently, VectorMapNet [26] proposes to organize the map ele-
ments in a vectorized form that is helpful to downstream tasks [11] and regard
the problem as set prediction [5], while it still falls into a two-step solution where
an auto-regressive generative model is involved. MapTR [23] first enables end-
to-end HD map learning by supervising the hierarchical queries with a variety
of permutation-equivalent ground truths. We appreciate the efficiency and im-
pressive performance of MapTR [23], so we develop our method on the basis of
it.
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2.3 Vision Transformer

ViT [10] demonstrates that as a fundamental image encoder architecture, Trans-
former could deliver on par performance as full-fledged ConvNets [31]. DETR [5]
and several follow-up works [22, 54] demonstrate that as a decoder, with the
aid of bipartite matching, Transformer eliminates the necessity of NMS post-
processing and thus lends unprecedented succinctness to cutting-edge detectors,
without compromising their efficacy. In this work, we migrate DETR-style head
to the field of online HD map construction as well, and analyze its behavior
mainly through the lens of training dynamics. Part of this work is technically
similar to Group DETR [6], but our analysis originates from the introspection
of MapTR and we put forward different variants for query augmentation, in
complementary to ground truth augmentation.

3 Approach

In this section, we first compile a short summary of the task and the most
relevant literature. Next, we decompose the model architecture and discuss its
components one by one.

3.1 Preliminary

Online HD map construction is an emerging topic in the autonomous driving
community, which has not been widely investigated. Therefore, we decided to
add a little background to provide easy access to a broad audience and ensure
that the setup between different papers is consistent.

Map elements could have dynamic geometrical shape. For example, the lane
divider is of open shape while the pedestrian crossing is of closed shape. The
nature of varied shape makes it unavailable to model these map elements in a
unified parametric manner. Thus, the open-shape and closed-shape map elements
are approximated as polylines and polygons respectively, by sampling equidistant
points on themselves. Formally, a map element can be discretized into an ordered
set of points V = [v1, v2, · · · , vNv

], where Nv is the total number of sampled
points. This procedure is termed vectorization, so the processed HD map is
called vectorized HD map accordingly.

VectorMapNet utilizes an auto-regressive model to sequentially emit the
points vi, i = 1, 2, · · · , Nv of one map element, which suffers from an inefficient
inference. By contrast, MapTR relaxes the constraint of fixed order by expand-
ing each single map element V to a set of permutation-equivalent map elements
V = (V, Γ ) = {V j = γj(V ), j = 1, 2, · · · ,M}, where Γ = {γj , j = 1, 2, · · · ,M}
denotes a collection of M transformations that reorganize the ordered points of a
map element but still reserve both its vectorized format and geometrical shape.
In other words, ∀V i, V j ∈ V, s.t., i, j = 1, 2, · · · ,M, i ̸= j, then V i and V j are
equivalent up to a permutation, described by γj ◦ (γi)−1.

After warming readers up, we shall step into more in-depth understanding
and improved design of map element learning in the sequel.
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3.2 Decoder

Training Following the encoder-decoder paradigm of DETR [5], to frame the
map element prediction problem as sparse instance detection, a vast number
of object-centric queries Q = {q1, q2, · · · , qN} are created to cover all the map
elements in one scene (N is greater than the maximal possible number of map
elements). During inference, MapTR infers all the map elements in one shot and
each map element is inferred from an individual query in the decoder. Specifically,
each query qi ∈ RD, i = 1, 2, · · · , N aggregates spatial information from the
encoder feature via cross attention and outputs the corresponding classification
and localization predictions p

(cls)
i ∈ RC and p

(loc)
i ∈ R2, where C is the number

of pre-defined categories of map elements. For brevity, we combine them into a
whole prediction pi = [p

(cls)
i , p

(loc)
i ] ∈ RC+2 by concatenation.

Given a set of ground truths G = {g1, g2, · · · , gN} that is padded with ∅ (no
object) to the length of N , each ground truth gi (actually a map element Vi in
Sec. 3.1) is uniquely assigned to one query qπ(i) ∈ Q as its label, where π is a
permutation of the indices. The optimal bipartite matching π̂ can be determined
using the Hungarian algorithm [18] by minimizing the overall matching cost
between all predictions and all ground truths. Once ground truth labels are
defined for each query (as well as its corresponding prediction), the task-specific
loss is derived as

L =

N∑
i=1

LHungarian(pπ̂(i), gi), (1)

where the Hungarian loss consists of classification, localization, and direction loss
as MapTR. For ease of illustration, we only take into account the loss from the
final Transformer decoder layer here, while in practice the total loss is summed
up from all the decoder layers.

However, considering the limited number of map elements in a self-driving
scenario, the bipartite matching strategy makes the neural network receive little
ground truth supervision from few learnable queries. In consequence, the conver-
gence speed and detection performance are reduced. Diving deep into MapTR,
we notice that the permutation-equivalent transformation mentioned in Sec. 3.1
accidentally addresses this issue to some extent. Concretely speaking, since the
queries are believed to be associated with spatial positions [5], by introducing nu-
merous spatially-permuted versions of a map element, the originally one ground
truth can be assigned to distinct queries now, to create more supervised matching
pairs. Thus, from our viewpoint, instead of “stabilizing the learning process” as
claimed by MapTR, the major effect of modeling diverse permutation-equivalent
map elements is essentially accelerating the convergence and improving the de-
tection performance, as shown in Fig. 5 and Tab. 2 of the original MapTR paper
respectively.

Moreover, in the implementation of MapTR1, not all the possible permuta-
tions of a map element are performed as stated in the paper. Instead, a pre-
defined number of M permutations are applied for each map element. In other
1 https://github.com/hustvl/MapTR

https://github.com/hustvl/MapTR
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Table 1: Two different ground truth permutation strategies give rise to similar per-
formance. Each map element is either permuted with all the possibilities (full set) or
M randomly sampled transformations (sub set).

GT permutation APped APlane AProad mAP

full set (MapTR introduced) 43.6 51.2 52.3 49.0
sub set (MapTR implemented) 44.1 51.7 51.5 49.1

words, the applied permutations do not cover a full set, but merely a subset with
a fixed cardinality M . For example, a polygon is only permuted with circular
shifting but without reversing its direction in practice. Afterward, random sam-
ples are drawn if the total number of permuted samples exceeds the limit M .
Now, ground truths are augmented as G = ∪M

j=1G
j = ∪M

j=1{g
j
1, g

j
2, · · · , g

j
N} with

gji = γj(gi) and the optimal assignment π̂(i, j) depends also on the index j. The
overall loss exactly used by MapTR is calculated as

L =

N∑
i=1

M∑
j=1

LHungarian(pπ̂(i,j), g
j
i ). (2)

Observed from the above equations, we further hypothesize that the top perfor-
mance of MapTR roots in the increment of ground truths, but does not exces-
sively demands a full coverage of all possible permuted ground truths. To back
up this contradiction, we conduct a controlled experiment using MapTR-Tiny.
As shown in Tab. 1, the performance difference between a full and partial set of
permutations is indeed marginal. In fact, the enhanced supervision furnished by
duplicated ground truths is somewhat obscured by the highlighted permutation-
invariant ground truth modeling, to which MapTR mostly attributes its success.

As a corroboration, if MapTR chooses the unordered Chamfer distance cost
for point-level matching in the Hungarian algorithm, one query would have the
same distance to all the permuted versions of a map element, then the term
of localization cost would completely lose its effect of discriminating different
permuted ground truths. The merit of augmented localization supervision would
be thereby attenuated. Table 8 of the MapTR paper shows that under such a
situation, the final performance is lower than permuted ground truths combined
with an ordered point-to-point localization cost but still higher than fixed-order
ground truths (at least the augmented classification supervision still helps).

Based on the understanding above, it is natural to further augment the su-
pervision for neural networks from the standpoint of query. Mathematically,
the original one set of queries is augmented to K sets as Q = ∪K

k=1Q
k =

∪K
k=1{qk1 , qk2 , · · · , qkN}. Note that during bipartite matching, the ground truths

G are still only matched with one set of queries at a time, for the purpose of
avoiding post-processing. Therefore, the optimal assignment may be inconsis-
tent across different sets of queries. For the kth set of queries, it is represented
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Table 2: Augmenting queries under two
modes, where the parallel mode is more
scalable and effective.

mode #set of query APped APlane AProad mAP

sequential cumulative 43.0 53.2 55.0 50.4

parallel

1 43.6 51.2 52.3 49.0
1+5 49.9 54.2 56.9 53.7
1+10 51.9 54.6 55.5 54.0
1+20 52.7 55.8 55.9 54.8

Table 3: Comparison among different
options of position embedding. Models
are equipped with 1+10 sets of parallel
queries as in Tab. 2, the same in Tab. 4.

position embedding APped APlane AProad mAP

emb → pos 51.9 54.6 55.5 54.0
pos → emb (sine) 49.9 57.3 57.8 55.0
pos → emb (linear) 50.7 56.6 58.0 55.1

as π̂k(i, j). Equipped with the augmented queries, the loss is written as

L =

K∑
k=1

N∑
i=1

M∑
j=1

LHungarian(p
k
π̂k(i,j)

, gji ). (3)

Along different axes, augmenting the query could be realized in two modes,
sequential or parallel. Resembling the style of DenseNet [14], the sequential mode
reuses the queries coming from the previous Transformer decoder layers, so the
number of queries will iteratively increase from shallower to deeper Transformer
decoder layers. The parallel mode simply uses multiple sets of queries from the
very start of Transformer decoder and the same number of queries exists in
consecutive Transformer decoder layers. No matter under which mode, in every
Transformer layer, the self-attention interaction only occurs within each individ-
ual set of queries. It is noteworthy that the augmented queries are merely used
during training and we only apply one set of query Q1 during inference, keeping
the deployment latency untouched.

The results are summarized in Tab. 2. In terms of the sequential mode,
iteratively accumulating the last two Transformer layers’ queries has exhausted
the GPU memory, but only improves the mAP by around 1%. So we insist
on the parallel mode unless otherwise specified. Regarding the parallel mode,
we explore the number of additional query set that spans a wide range from 0
to 20. We find that the performance consistently improves with the increasing
query set and still does not saturate until running out of GPU memory. The
performance advantage of 20 additional sets of query comes at the cost of an
enormous memory footprint, impeding our further exploration in the following,
so we choose to conservatively enlarge the number of query set to 1+10 by
default. Nevertheless, the ever-growing performance in Tab. 2 speaks for the
potential of our method to be further unleashed. We expect to witness another
performance leap as soon as larger memory is affordable.

In addition, the positional embedding fed to the decoder can be born in
different formats. MapTR generates reference locations from implicitly initialized
position embedding, which invokes an ambiguity in its geometric meaning, since
such an embedding does not have any notion of spatial distribution prior. On the
contrary, we advocate producing position embedding with explicitly initialized
reference locations. Unlike MapTR that requires a linear projection layer, a



MapNeXt 9

Table 4: Interplay between the number
of query and the dimension of FFN. The
number of query refers to that of instance
query in a single query set. All model vari-
ants are trained for 110 epochs to full con-
vergence. The specification of timing is in
Tab. 6.

#query FFN dim. #params. FPS APped APlane AProad mAP

50 512 82.1M 16.5 66.2 71.7 73.0 70.3
75 512 82.1M 16.3 66.0 72.0 73.4 70.5
50 1024 83.9M 16.3 67.8 72.5 73.0 71.1
50 2048 87.6M 16.3 67.1 72.4 73.5 71.0
75 1024 84.0M 16.4 68.0 73.1 74.0 71.7

Table 5: MapTR-Tiny with a wide spec-
trum of backbones and pre-training tasks.
♭ indicates neither the shallow network
stages nor BN layers are frozen.

backbone pretrain APped APlane AProad mAP

R18 ImageNet cls♭ 39.9 49.4 48.7 46.0
CurveLanes 40.9 49.7 49.0 46.5

R50 ImageNet cls♭ 44.9 52.2 53.8 50.3
nuImages det 40.4 49.3 52.0 47.3

V99

ImageNet cls♭ 54.0 62.9 61.0 59.3
ImageNet cls 52.0 61.1 60.5 57.9
nuScenes det 56.3 64.9 65.2 62.1
nuScenes seg♭ 58.5 65.5 67.8 63.9
nuScenes seg 58.4 66.9 66.5 63.9

sinusoidal encoding function [41] without trainable parameters is leveraged in
our model to map a normalized 2D location into the latent embedding space.
As a result, the inference process is even accelerated mildly, from 20.0 to 20.3
FPS on an NVIDIA A100 GPU. We also consider a linear projection layer as
an alternative for mapping, but it brings negligible gain. The comparison results
are displayed in Tab. 3. Thanks to the positional information straightforwardly
injected into the learnable queries, our decoder is optimized in a more easy and
interpretable manner. To the best of our knowledge, the most related work might
be Anchor DETR [44], but our design is simple yet effective in comparison to
Anchor DETR: our position encoding is not only exclusive of multiple patterns
of anchors, but also leads to a decent performance gain even forgoing neural
network layers.

Scaling To scale up, sufficient decoder network capacity is necessary to digest
more queries, so as to guarantee an improved performance. For this set of ex-
periments, we use a stronger VoVNetV2 backbone [20], of which the elaboration
is deferred to Sec. 3.3. Either trivially increasing the query number or widening
the Feed-Forward Network (FFN) independently achieves limited improvement.
In stark contrast, combing the two finally yields a high-performing model, as
shown in Tab. 4. The listed results are non-trivial from the following aspects:
I. fixing the FFN dimension to 512, increasing the query brings little gain (line
1&2), II. after widening the FFN dimension to 1024, the same increment of query
(50 → 75) brings a larger gain (line 3&5 vs. line 1&2), III. fixing the number of
query to 50, even widening the FFN dimension to 2048 achieves inferior perfor-
mance to a balanced combination of 75 instance query and 1024d FFN, albeit
with a 3.6M more parameter count (line 4&5).

3.3 Encoder

Training MapTR initializes their ResNet [13] or Swin Transformer [30] back-
bone network with ImageNet [9] pre-trained weights, which is an old-fashioned
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scheme for transfer learning. We perform a pilot study by initializing the ResNet-
18 weights pre-trained on CurveLanes [48] with CondLaneNet [25], which slightly
strengthens its final performance, as exhibited in Tab. 5. Still, one thing worth
noting is that not all kinds of pre-training helps. The pre-training domain should
be as close to our task of interest as possible, i.e., map element learning, in favor
of a successful transfer.

To complement this posit, we provide counter examples in Tab. 5. First of
all, we adopt a ResNet-50 pre-trained on nuImages with Cascade R-CNN [4] as
the backbone. This pre-training setting is said to boost up the camera-based
BEV 3D object detection significantly [47], but it deteriorates the map element
construction oppositely, possibly due to the domain gap between the pre-training
objectives and the target task. Beyond that, we employ VoVNetV2-99 [20] as the
backbone network that is also pre-trained on ImageNet. We find that a common
routine of frozen Batch Normalization (BN) statistics [17] induces a performance
drop of over 1% mAP. The phenomenon implies that ImageNet might also not
be a proper source dataset for our pre-training, since most object-centric images
in ImageNet deviate from the driving scenarios. Another potential reason is that
ImageNet pre-trained network concentrates on the classification task, then it
would take much effort to adapt the weights for other downstream tasks, so it
helps less if the target task is more sensitive to localization [12].

All the above analyses taken into account, it is encouraged to pick a highly
relevant task and dataset for backbone pre-training, in order to narrow down
the domain gap. VoVNetV2-99, initialized with the weights that are successively
trained on DDAD-15M with DD3D [35] and nuScenes with FCOS3D [42], is
the de facto standard backbone of top-performing 3D object detectors on the
nuScenes leaderboard. MapTR armed with the same bespoke weights outstrips
its ImageNet pre-trained counterpart by a remarkable 4.2% mAP. To take one
step further, we pre-train the VoVNetV2 backbone on a nuScenes BEV map seg-
mentation task with PETRv2 [28], to enjoy the benefit of rich semantic features.
As expected, another 1.8% higher mAP is reached powered by this more relevant
pre-training task. By the way, dissimilar to the case in the last paragraph, even
frozen BN statistics would not impair the performance of this model, thanks to
the same nuScenes data statistics.

Scaling Scaling up the model for online vectorized HD map construction is
rarely well-studied. To bridge this gap, we provide a family of MapNeXt variants
from on-board to off-board architectures. It should be emphasized that model
scaling is never as effortless as expected. For example, a ConvNeXt-XL [31] back-
bone pre-trained on ImageNet performs merely on par with or even inferior to a
VoVNetV2-99 pre-trained on DDAD-15M for 3D object detection/map segmen-
tation, despite with a 3.5× parameter amount2. Unlike the above plateau, we
reveal that the online HD map construction task fortunately enjoys the profit
2 Under the PETRv2 framework for BEV segmentation, ConvNeXt-XL obtains an IoU

of 85.6%/47.6%/42.5% for the drive/lane/vehicle class, not as good as the result of
85.6%/48.9%/46.4% achieved by VoVNetV2-99.
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of large-scale image backbone in Tab. 6, where there still exists no evidence of
performance saturation with hundreds of parameters.

3.4 Neck

Last but not least, the neck commonly bridges the encoder and decoder part in a
detection system, which is instantiated as a PV-to-BEV transformation module
in the BEV-oriented detectors. The original publication of MapTR has already
sweepingly explored this component, ranging from the classical Inverse Perspec-
tive Mapping (IPM) [33], to modern Lift-Splat [37], deformable attention [22]
and Geometry-guided Kernel Transformer (GKT) [7]. We also do not find much
difference among these variants during reproduction and simply inherit the GKT
module chosen by MapTR.

4 Main Experiments

4.1 Dataset

nuScenes [2] is a widely-adopted benchmark for versatile autonomous driving
tasks. It contains 1, 000 scenes of 20 seconds duration each, of which the key
frames are annotated at 2Hz. The entire dataset is split into 700, 150, and 150
scenes for training, validation, and testing respectively. Each sample contains
RGB images from 6 surrounding-view cameras, covering a horizontal FOV of
360◦.

Following the convention [21,23,26], the categories of interest are pedestrian
crossing, lane divider and road boundary. Similar to regular object detection
tasks, the evaluation metric is also Average Precision (AP). The difference lies in
that the distance between two map elements is measured with Chamfer distance
(unlike the Intersection over Union between two bounding boxes). For a fair
comparison to peer works [21, 23, 26], the distance thresholds are ranging from
0.5 to 1.5 with an interval of 0.5.

4.2 Implementation Details

In general, we primarily follow MapTR’s training protocol. All model architec-
tures are implemented with the PyTorch library [36] and the training is dis-
tributed on 8 NVIDIA A100 GPU devices with Automated Mixed Precision
(AMP) [34]. The mini-batch size per device is set to 4, except for ConvNeXt-XL
and InternImage-H which is halved. The training period lasts for 24 epochs for
fast prototyping and 110 epochs for system-level comparison. The initial learning
rate is 0.006 and is decayed following a half-cosine-shaped function. The learn-
ing rate of the backbone is multiplied by a factor of 1/10 because it has been
pre-trained. We find the final result is fairly robust to the initial learning rate,
probably thanks to the AdamW optimizer [32]. The weight decay is fixed as 0.01
and the ℓ2 norm of gradients is clipped to be no more than 35. The probability
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Table 6: State-of-the-art comparison on the nuScenes val set. “C” and “L” stand for
input modality of camera and LiDAR. “R18/50”, “V99” and “EffNet” denote ResNet-
18/50 [13], VoVNetV2-99 [20] and EfficientNet [40] respectively. “PP” is short for Point-
Pillars [19]. All the latency is measured with a batch size of 1 after warmup. The entries
in gray are reported by MapTR [23] while others are timed by ourselves. † indicates
using 75 instance queries and 1024 FFN dimensions, while ‡ indicates using 80 instance
queries and 2048 FFN dimensions.

Architecture Modality Backbone Epochs AP #Param. FPS
ped. lane road avg. RTX3090 A100

HDMapNet [21] C EffNet-B0 30 14.4 21.7 33.0 23.0 - 0.8 -
HDMapNet [21] L PP 30 10.4 24.1 37.9 24.1 - 1.0 -
HDMapNet [21] C & L EffNet-B0 & PP 30 16.3 29.6 46.7 31.0 - 0.5 -

VectorMapNet [26] C R50 110 36.1 47.3 39.3 40.9 - 2.9 -
VectorMapNet [26] L PP 110 25.7 37.6 38.6 34.0 - - -
VectorMapNet [26] C & L R50 & PP 110 37.6 50.5 47.5 45.2 - - -

MapTR-Nano [23] C R18 110 39.6 49.9 48.2 45.9 15.3M 29.2 50.5
MapTR-Tiny [23] C R50 24 46.3 51.5 53.1 50.3 35.9M 12.6 20.0
MapTR-Tiny [23] C R50 110 56.2 59.8 60.1 58.7 35.9M 12.6 20.0
MapTR-Tiny [23] C Swin-Tiny 24 45.2 52.7 52.3 50.1 39.9M 9.1 -
MapTR-Small [23] C Swin-Small 24 50.2 55.4 57.3 54.3 61.2M 7.3 -
MapTR-Base [23] C Swin-Base 24 50.6 58.7 58.4 55.9 99.2M 6.1 -
MapTR-Tiny [23] L SECOND 24 48.5 53.7 64.7 55.6 - 7.2 -
MapTR-Tiny [23] C & L R50 & SECOND 24 55.9 62.3 69.3 62.5 39.8M 5.2 6.2

MapNeXt-Tiny C R50 24 50.3 58.8 58.7 56.0 36.0M 12.7 20.3
MapNeXt-Tiny C R50 110 57.7 65.3 65.8 63.0 36.0M 12.7 20.3
MapNeXt-Base C V99 24 58.5 65.5 67.8 63.9 82.1M 9.3 16.5
MapNeXt-Base C V99 110 66.2 71.7 73.0 70.3 82.1M 9.3 16.5
MapNeXt-Base† C V99 110 67.8 73.1 74.1 71.7 84.0M 9.2 16.4
MapNeXt-Large C ConvNeXt-XL 24 66.7 72.4 70.4 69.8 360.9M 3.5 5.9
MapNeXt-Large C ConvNeXt-XL 110 71.5 74.9 74.7 73.7 360.9M 3.5 5.9
MapNeXt-Large‡ C ConvNeXt-XL 110 73.7 78.4 76.2 76.1 366.5M 3.5 5.9
MapNeXt-Huge‡ C InternImage-H 110 77.4 79.3 78.8 78.5 - - -

of stochastic depth [15] applied to ConvNeXt-XL is 0.4. The layer-wise learning
rate decay [1] applied to InternImage-H is 0.95. Such regularization is impor-
tant for the performance of Transformer-like models based on both previous
experience [39] and our observations. Data pre-processing is consistent with the
precedent practice [23], in order to isolate the role of model improvement from
other compounding factors. The perception range is [-15.0m, 15.0m] along the
X-axis and [-30.0m, 30.0m] along the Y-axis with reference to the ego-vehicle.

4.3 Quantitative Results

The model profiling and performance comparison are showcased in Tab. 6.
MapNeXt-Tiny outperforms the MapTR-Tiny counterpart by a considerable
gain of 5.7% mAP after training for 24 epochs, with marginally higher through-
put. This performance gain holds as a 4.3% mAP when they are both trained
longer until 110 epochs. MapNeXt-Tiny even surpasses MapTR-Base that uti-



MapNeXt 13

lizes Swin Transformer-base [25] as the backbone, with only 36% parameters and
48% latency. The results prove the effectiveness of our proposed model training
strategies. Note that we follow MapTR’s training recipe and do not tune the
hyper-parameters optimized for MapTR, which may even put our MapNeXt at
a disadvantage in comparison to MapTR.

To verify the generality of MapNeXt, we further replace the image backbone
with VoVNetV2-99. The preferable map segmentation pre-training strategy in
Tab. 5 is applied. The resulting MapNeXt-Base outperforms our own MapNeXt-
Tiny by more than 7% mAP, preserving 81% of the throughput. When comparing
MapNeXt-Base against the best-in-class vision-only MapTR within 24 epochs,
it surpasses MapTR-Base in terms of both efficacy and efficiency, i.e, 8% higher
mAP and 3.2 more FPS. In addition, we would like to figure out if vision-
only MapNeXt-Base could rival the strongest MapTR model, a multi-modality
MapTR-Tiny, that takes the best from both worlds of camera and LiDAR. Im-
pressively, the answer is affirmative. MapNeXt-Base outperforms multi-modal
MapTR-tiny by an 1.4% mAP while being 1.8 times fast. The overwhelming
performance of MapNeXt-Base justifies the privilege of VoVNet pre-training
on nuScenes map segmentation. Moreover, the multi-modal MapTR model har-
nesses sparse convolution [49] to process the input LiDAR point cloud, posing
challenges to onboard deployment, while our MapNeXt is free of such complex
operators.

To scale up, we elevate the model capacity to a magnitude of hundreds of pa-
rameters, by upgrading the image encoder to ConvNeXt-XL and InternImage-H.
We observe that the corresponding MapNeXt-Large does not level off in perfor-
mance but widens the gap between itself and multi-modal MapTR to 7.3% mAP.
Echoed with the findings from Tab. 4, we increase the query number and FFN
dimension together when scaling up the decoder, leading to a non-trivial 2.4%
mAP increment without compromising the inference efficiency. MapNeXt-Large
is not a real-time model but can be capitalized on for offboard settings, such as
auto-labeling. Importantly, when compared with non-real-time VectorMapNet
with only camera input, MapNeXt-Large nearly doubles the accuracy while still
running 1.2× faster. It is also worth mentioning that an over-fitting phenomenon
has been observed in the later period of training, for which the limited input im-
age resolution (0.5× resizing) is blamed. Though, to keep a clear comparison of
model architecture, we would rather not increase the input scaling factor here but
substantiate its effectiveness when participating in the CVPR 2023 challenge af-
terward in Sec. 5. Finally, armed with the InternImage-H [43] backbone network
that is pre-trained on COCO-Stuff [3] and ADE20K [53] using Mask2Former [8],
the online HD map construction performance of MapNeXt-Huge is lifted to an
unparalleled 78.5% mAP.

5 Challenge Results

Built upon the skeleton of MapNeXt, our entry into the online HD map construc-
tion competition of CVPR 2023 Vision-Centric Autonomous Driving (VCAD)

https://vcad.site/
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Workshop and Joint CVPR 2023 End-to-End Autonomous Driving workshop
wins the honorable runner-up with a 73.65 mAP on the test server without any
test time augmentation or model ensemble tricks, outperforming the official base-
line method by a notable 31.4 mAP. Note that the model is merely trained for 24
epochs and our submission is the second earliest one (∼20 days before deadline)
on the public leaderboard, so there leaves much room for further enhancement.
The dataset of this challenge is set up via reshaping Argoverse2 [46], where the
front-view image is portrait while the others are landscape, so pre-processing
steps include resizing the front view into a unified image resolution 1550× 2048.
Then, the input images are resized with a scaling factor of 0.9 to avoid overfitting.
Excepth that, most of the data pre-processing steps follow the precedent prac-
tice of MapTR [23]. During this challenge, the general applicability and potential
representation ability of MapNeXt are proved again in a different benchmark.

6 Conclusion

In this work, we rethink the optimization hindrance of MapTR and reinforce the
training strategies with enriched informative queries. We additionally pinpoint
the critical importance of appropriate pre-training. Since the self-driving world
prioritizes efficiency, we highlight that these improved training techniques could
be inserted into the existing architecture tailored for online HD map construction
without interfering in the inference. Besides lightweight onboard models, we also
build offboard ones with empirical scaling principles. In summary, we construct
the model family named MapNeXt with a wide coverage of onboard and offboard
architectures, attaining leading performance while retaining high throughput.
Particularly, MapNeXt-Large/Huge sets a new state-of-the-art on the online HD
map construction track of the public nuScenes benchmark. We hope this work
paves a path to real-world applications of online vectorized HD map construction
in autonomous driving.

https://vcad.site/
https://vcad.site/
https://vcad.site/
https://opendrivelab.com/AD23Challenge.html
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