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Abstract. We present an innovative framework for traffic dynamics
analysis using High-Order Evolving Graphs, designed to improve spatio-
temporal representations in autonomous driving contexts. Our approach
constructs temporal bidirectional bipartite graphs that effectively model
the complex interactions within traffic scenes in real-time. By integrat-
ing Graph Neural Networks (GNNs) with high-order multi-aggregation
strategies, we significantly enhance the modeling of traffic scene dynam-
ics, providing a more accurate and detailed analysis of these interactions.
Additionally, we incorporate inductive learning techniques inspired by
the GraphSAGE framework, enabling our model to adapt to new and
unseen traffic scenarios without the need for retraining, thus ensuring
robust generalization. Through extensive experiments on the ROAD and
ROAD Waymo datasets, we establish a comprehensive baseline for fur-
ther developments, demonstrating the potential of our method in ac-
curately capturing traffic behavior. Our results emphasize the value of
high-order statistical moments and feature-gated attention mechanisms
in improving traffic behavior analysis, laying the groundwork for ad-
vancing autonomous driving technologies. Our source code will be made
available at: https://github.com/Addy-1998/High_Order_Graphs

Keywords: traffic dynamics representation · high-order evolving graphs
· graph neural networks · multi-aggregation · temporal bidirectional bi-
partite graphs

1 Introduction

Recognizing driving activities and actions from video and image data is a cru-
cial task in computer vision and pattern recognition, particularly for enhancing
the safety of autonomous vehicles and preventing collisions. This technology is
integral to Advanced Driver Assistance Systems (ADAS), contributing to the
development of features such as adaptive cruise control and lane-keeping assis-
tance, which are essential for maintaining safe vehicle distances and providing
timely alerts for lane changes [38]. The complexity of driving scene-based activ-
ity detection arises from the highly dynamic and unpredictable nature of traffic
environments, especially in urban areas where the overall scene dynamics, in-
cluding the movement and interaction of various road users such as vehicles,
pedestrians, and cyclists, play a critical role [5, 7]. These scene dynamics are
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(a) Graph Construction. (b) Inductive learning approach

Fig. 1: (a) Temporal bidirectional bipartite graph construction from spatio-temporal
tube features. (b) Inductive learning framework updating root node features via gen-
erated nodes through statistical aggregation from neighbors.

influenced by factors such as traffic signals, road conditions, and the collective
behaviors of road users, making it challenging to accurately predict and recognize
activities [22]. The diversity in driving behaviors and techniques across different
regions and countries further complicates this task, highlighting the need for
efficient algorithms capable of accurately interpreting a wide range of driving
actions [31]. Addressing these challenges is vital for improving traffic safety and
enhancing the effectiveness of autonomous driving technologies.

Traditional video activity recognition methods primarily focus on captur-
ing the spatio-temporal dynamics of objects by tracking features like bounding
boxes, 3D coordinates, and key points across video frames to understand how
an object’s spatial and temporal attributes evolve over time [2,16]. While these
methods effectively capture broader spatio-temporal aspects, they often struggle
with finer details, especially in cluttered environments where subtle movements
are crucial [4]. To overcome these limitations, deep learning techniques such
as Convolutional Neural Networks (CNNs) [1] and Long Short-Term Memory
Networks (LSTMs) [25], along with more advanced approaches like 3D Convo-
lutional Neural Networks (3D CNNs) [33], have been adopted. Unlike 2D CNNs
that capture only spatial features from individual frames, 3D CNNs process both
spatial and temporal data simultaneously, making them more effective at recog-
nizing complex actions in dynamic scenes [33]. However, these models still face
challenges, particularly with videos that require an understanding of extended
temporal contexts spanning large video durations [10]. These methods typically
process segmented video clips rather than entire sequences, limiting their ability
to capture long-term dependencies. They also require substantial computational
resources and may struggle to fully capture intricate relationships in dynamic
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environments, crucial for understanding traffic behavior [28]. Our approach uses
3D CNNs to extract detailed spatio-temporal features from short object move-
ments within continuous video streams. These features are connected through a
our proposed graph structure, enabling efficient long-term video representation
while managing computational demands, improving the model’s ability to rep-
resent complex traffic dynamics.

Graph-based approaches [24, 40] have become increasingly popular for tack-
ling the complexities of traffic scene analysis by effectively modeling spatial
and temporal relationships between objects. Spatio-temporal traffic graphs, for
instance, capture the evolution of traffic states, enabling the identification of
congestion patterns and flow dynamics in mixed traffic conditions [26]. Induc-
tive learning techniques in graph-based models have further enhanced these
approaches by enabling generalization to unseen data through feature-based
embeddings, rather than relying solely on fixed graph structures [13, 37]. This
is particularly crucial for real-time traffic analysis, where adaptability to dy-
namic environments is essential. Additionally, advanced aggregation techniques
in Graph Neural Networks (GNNs) boost the representational power of models
by effectively integrating information from neighboring nodes while maintaining
computational efficiency [9]. By leveraging these advancements, our approach
offers a scalable and robust solution for accurate activity recognition in complex
driving scenarios.

In this work, we present a novel framework that utilizes inductive learning
into graph-based approaches for driving scene analysis, inspired by the Graph-
SAGE [13] framework. We enhance the capabilities of GNNs by introducing a
more effective node generation mechanism as part of the inductive learning pro-
cess, incorporating a multi-aggregation approach [9]. This inductive approach
allows our model to adapt to new scenarios without the need for retraining on a
fixed graph structure, making it particularly suitable for real-time applications
in dynamic and evolving traffic environments. We employ state-of-the-art (SotA)
feature extraction techniques to capture robust spatio-temporal representations
of objects within a very short time span. By incorporating high-order statis-
tics into the aggregation process, we construct a high-order evolving graph that
efficiently captures the intricate details of scene dynamics in video data. This
ensures that our model remains accurate and robust, effectively handling the
complexity of driving scenarios.

1.1 Related Work

Spatio-Temporal Approaches. Spatio-temporal methods in video analysis
have been instrumental in advancing the understanding of object movements
and interactions over time, which is crucial for tackling complex video tasks.
Foundational models like Separable 3D CNNs (S3D) [36], R(2+1)D [34], Slow-
Fast networks [11], and 3D ResNet [14] have been key in extracting rich spatio-
temporal features. These architectures have improved motion representation and
classification accuracy, setting benchmarks in processing efficiency and depth of
analysis across various video applications, including action recognition and scene
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understanding in dynamic environments. Building on these foundations, recent
approaches have introduced more sophisticated mechanisms for refining video
analysis. For instance, Diba et al . [8] proposed a convolution-attention network
that balances short and long-range temporal cues using a hierarchical struc-
ture, providing nuanced temporal understanding necessary for complex video
reasoning. Similarly, Chen et al . [6] utilized Spatio-Temporal Cross-Covariance
Transformers in neural video compression, effectively merging spatial and tem-
poral data with advanced 3D convolutional strategies and attention mechanisms,
which are crucial for managing large-scale video data in autonomous driving ap-
plications. Li et al . [20] introduced the Spatio-Temporal Rationalizer (STR),
a technique that dynamically identifies crucial video moments and objects, en-
hancing model performance on multifaceted datasets—an essential capability for
accurate, context-aware traffic analysis in autonomous driving. Our work builds
on these models as backbones, seamlessly integrating them into our GNN frame-
work to significantly enhance scene classification, action recognition, and scene
understanding in autonomous driving.
Graph-Based Approaches. Recent advancements in GNNs [21, 23, 30] for

traffic scene analysis have shown substantial progress in traffic management and
vehicle behavior prediction. Foundational work includes Visual Traffic Knowl-
edge Graphs by Guo et al . [12], which parse complex interactions within traffic
scenes to improve semantic understanding. Mlodzian et al . [23] contributed the
nuScenes Knowledge Graph, which provides a comprehensive semantic represen-
tation that enhances trajectory prediction by incorporating detailed contextual
information like road topology and traffic regulations. Further advancements in-
clude Thakur et al . [30], who developed a nested graph-based framework for
early accident anticipation, contributing to proactive traffic safety. Li et al . [19]
introduced EvolveGraph, a framework for multi-agent trajectory prediction us-
ing dynamic relational reasoning, which significantly improves the understand-
ing and forecasting of agent movements in complex environments. Kumar et

Fig. 2: The proposed pipeline begins with (a) graph construction, where nodes re-
ceive features extracted from spatio-temporal tubes via a 3D CNN. The graph is then
processed through (b) high-order multi-aggregation based inductive learning layers,
followed by (c) feature-level gated attention aggregation and a fully connected linear
layer for classification.
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al . [18] refined trajectory prediction with an interaction-based model that in-
corporates agent interactions over a hybrid traffic graph, enhancing accuracy in
mixed traffic scenarios. Jin et al . [17] focused on fast contextual scene graph gen-
eration with unbiased context augmentation for dynamic scene understanding,
while Hugle et al . [15] explored dynamic interaction-aware scene understanding
crucial for reinforcement learning in autonomous driving. Additionally, Tian et
al . [32] developed RSG-Search Plus, a traffic scene retrieval method based on
road scene graphs, facilitating efficient scene indexing and retrieval. Liu et al . [21]
combined traffic scenario understanding with video captioning, using a guidance
attention captioning network to generate informative video summaries. Wang et
al . [35] proposed a graph and spatio-temporal continuity framework for accident
anticipation, highlighting GNNs’ utility in predicting traffic incidents. Sadid et
al . [27] introduced a dynamic spatio-temporal GNN for surrounding-aware tra-
jectory prediction in autonomous vehicles, and Zhou et al . [39] presented a hi-
erarchical knowledge-guided traffic scene graph representation framework that
supports intelligent vehicle applications by learning complex traffic scene dy-
namics. Büchner et al . [3] investigated the aggregation of lane graphs for urban
automated driving, enhancing navigational strategies. Unlike these approaches,
our method employs high-order evolving graphs based on inductive learning to
better capture long-term dependencies and complex interactions, significantly
boosting accuracy and robustness in scene understanding and action recognition
for autonomous driving.

2 Proposed Approach

Our model pipeline, depicted in Fig. 2, classifies events in traffic scenes using a
dataset of N videos, denoted as Vn where n = {1, 2, . . . , N}, each with a ground
truth label pn. The objective is to predict class probabilities p̂n that closely match
the true labels pn. The approach comprises three main components: 1) Spatio-
temporal tube feature extraction using a 3D CNN backbone, 2) Construction of a
temporal bidirectional bipartite graph linking objects across consecutive frames
based on extracted features as node features, and 3) A multi-aggregation mecha-
nism incorporates high-order statistics from neighboring nodes. This mechanism
utilizes an inductive representation-based graph learning framework [13]. The
process is finalized with feature-level gated pooling and a classification layer,
producing the class probabilities p̂n to match the true labels pn accurately.

2.1 Spatio-Temporal Tube Features

We start by generating spatio-temporal tubes for each object in every video
frame. For each object a spatio-temporal tube is created based on its bounding
box, capturing the object’s appearance across a sequence of frames. This tube
spans τ consecutive frames, with τ/2 frames preceding and τ/2 frames following
the central frame. The resulting spatio-temporal tube forms a 4D tensor with
dimensions of τ (time) × w (width) × h (height) × C (channels), where w × h
represents the bounding box size of the object in the central frame. We then
adjust the spatial resolution of these tensors using bilinear interpolation to match
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the input dimensions required by the pre-trained 3D CNN model. The S3D
model [36], a SotA 3D CNN designed for video classification tasks, is employed
as our feature extractor to process these spatio-temporal tubes. It is important
to note that this feature extraction serves as a pre-processing step and does not
involve any training. The extracted features are used as node features in our
bipartite graph, modeling dynamic interactions between consecutive frames.

2.2 Temporal Bidirectional Bipartite Graph

Graph Construction. Given a video Vn consisting of T frames, we construct a
multi-frame bidirectional bipartite graph Gn(Vn, En) to represent the interactions
among objects between consecutive frames. The node set Vn comprises all the
objects present across entire video frames, while the edge set En represents the
bidirectional connections between objects in adjacent frames. Specifically, the
graph Gn connects objects represented by sets X1, X2, . . . , Xk, which are present
in frames f1, f2, . . . , fT of video Vn, through bidirectional bipartite connections.
These connections are represented by the edge set En = B1↔2 ∪ B2↔3 ∪ . . . ∪
B(T−1)↔T . Formally, this can be expressed as:

Gn(Vn, En) = G

(
T⋃

i=1

Xi,

T−1⋃
i=1

Bi↔(i+1)

)
(1)

where Bi↔(i+1) represents the bidirectional bipartite edge set between objects
in frames i and i + 1. The total number of nodes and edges in the graph are
therefore calculated as

∑T
i=1 |Xi| and 2

∑T−1
i=1 |Xi| × |Xi+1|, respectively. We

uniformly sample frames at regular intervals, specifically every 5th frame (i.e.,
every 0.167 seconds for a 30fps video), to avoid constructing unnecessarily large
graphs.
Complexity Analysis. The complexity of constructing our T -layered bipartite
graph Gn can be analyzed by evaluating the complexities associated with node
and edge creation. For a video Vn with an average of x̄ objects per frame across
T frames, the complexity of creating the nodes is approximately O(T x̄). The cre-
ation of edges En, which involves connecting objects between adjacent frames, re-
sults in a complexity of O(T x̄2). Therefore, the overall complexity of constructing
the graph, combining both node and edge creation, isO(T x̄)+O(T x̄2) ≈ O(T x̄2),
assuming x̄ ≫ 1. In contrast, constructing a fully connected graph with T × x̄
nodes would lead to a complexity of approximately O((T x̄)2) for large T and
x̄, primarily because connections extend beyond just consecutive frames. This
comparison highlights the efficiency of our bipartite graph approach in handling
longer videos while keeping the average number of objects per frame constant.
Notably, when x̄ ≈ 1, the complexity of Gn simplifies to O(T ), indicating that
the graph’s complexity is more dependent on the number of frames than on the
number of objects per frame.

2.3 High-Order Inductive Learning

The core concept of our approach is to efficiently learn and aggregate features
(illustrated in Fig. 3) by generating robust node embeddings from a node’s local
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Fig. 3: Illustration of the multi-aggregation process in the high-order inductive learn-
ing mechanism as discussed in Section 2.3. The top block shows the graph convolution
where the root node is updated through transformations and aggregation. The bottom
block details the statistical multi-aggregation applied to neighboring nodes, with fea-
tures concatenated and projected to enhance node representations.

neighborhood that generalize well to unseen interaction patterns in traffic scenes.
Inspired by GraphSAGE [13], we extend its single aggregation operation by em-
ploying a set of K trainable aggregation functions, ψk for each k ∈ {1, . . . ,K},
to aggregate information from neighbors. The aggregated features are then pro-
jected into a more informative embedding space using projection matrices Wk,
transforming the raw features into a richer, more expressive representation.
Generate Embedding and Update. The feature information of the pth root
node (denoted by xp) is updated based on its neighboring nodes indexed by N (p).
This process begins by applying a set of K statistical aggregation functions ψk,
each independently reducing the |N (p)|×F feature matrix, constructed from the
neighboring nodes, into a 1×F vector. These aggregated features are then con-
catenated along the feature dimension, resulting in a final dimension of 1×KF .
Without loss of generality, all the projection matrices Wk ∈ RF×Fa

associated
with each aggregation function can be represented as a single projection matrix
Wproj = [W1,W2, . . . ,WK ]T ∈ RKF×Fa

, where F a is the output feature di-
mension of an aggregation operation. Additionally, a bias term bproj ∈ R1×Fa

is
added to this transformation, which can be expressed as:

Ψq∈N (p)(xq) = Wproj ·
(∥∥

k
ψk(xq)

)
+ bproj , (2)

where q indexes the neighboring nodes relative to the root node. This final
transformation updates the feature information of each node xp in our graph
Gn. The update rule for the lth layer of our GNN model is therefore expressed
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as:
xl+1
p = Wl

px
l
p +Wl

q · Ψ l
q∈N (p)x

l
q + bl

q, (3)

Here, Wp ∈ RF×F ′
and Wq ∈ RFa×F ′

are separate transformations applied
to the root node and the neighboring nodes, respectively, to match the desired
output dimension F ′ of the GNN operation.
Multi-Aggregation with High-Order Statistics. We enhanced the aggre-
gation process by introducing high-order statistical moments alongside the usual
mean, standard deviation, and median calculations, resulting in a more robust
and informative aggregation operation. Each aggregator performs an element-
wise operation along each feature dimension, reducing the |N (p)|×F feature ma-
trix X into 1×F dimensional vector, where X = [x1,x2, . . . ,x|N (p)|]

T and each
xi is an F -dimensional column vector. The mean aggregation function ψ1(X) =

µ = 1
|N (p)|

∑|N (p)|
i=1 Xi,: computes the mean of feature X. Similarly, the standard

deviation of X can be calculated as ψ2(X) = σ2 = 1
|N (p)|

∑|N (p)|
i=1 (Xi,:−µ)2. The

median aggregation function ψ3 calculates the feature-wise median. For each fea-
ture position along |N (p)|, the median is determined by first sorting the values
in ascending order and then selecting the middle value, which corresponds to the
position i =

⌊
|N (p)|

2

⌋
. To extend the range of statistical properties captured by

our model, we incorporate high-order statistical aggregations. These are repre-
sented as ψm(X) = 1

|N (p)|
∑|N (p)|

i=1 (Xi,: −µ)m, where m denotes the order of the
statistic. Specifically, we use high-order aggregations with m = 3 and m = 4, in
addition to the mean, standard deviation, and median. This multi-aggregation
strategy ensures that our model captures a diverse range of statistical proper-
ties from the node’s local neighborhood, leading to a more comprehensive and
expressive node embedding.
Feature-Gated Attention Pooling. After generating the output features from
the final layer of our GNN model, we apply feature-gated attention pooling to
aggregate node features across the graph Vn and produce the final prediction for
the video sequence. This mechanism selectively emphasizes the most relevant
nodes, enhancing the model’s ability to capture critical aspects of the video. Let
the output of the final GNN layer be X̂ ∈ R|Vn|×F̂ , where |Vn| is the number of
nodes in the graph corresponding to the video Vn. The feature-gated attention
pooling is expressed as:

Xpooled =

|Vn|∑
i=1

S
(
X̂iW1 + b1

)
⊙ X̂i (4)

where term S(·) = e(·)/
∑|Vn| e(·) is a softmax operation applied over X̂i using a

learned transformation with weight matrices W1 ∈ RF̂×F̂ and bias b1 ∈ R1×F̂ .
This serves as a feature-gated attention mechanism, modulating the importance
of each node’s features through an element-wise Hadamard product (denoted by
⊙) with the input matrix X̂. By gating features, the pooling operation prioritizes
the most relevant nodes, ensuring the model focuses on those contributing most
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to the action representation. The pooled output Xpooled is then passed through
a fully connected layer followed by a softmax activation function to yield the
final prediction p̂n for the video sequence Vn.

3 Experiments

In this section, we explore the datasets utilized, the evaluation metrics applied,
and the implementation specifics. Following this, we present a performance com-
parison with existing SotA methods and conclude with an in-depth ablation
analysis.

3.1 Dataset Description and Evaluation

Our method was evaluated using two primary datasets: the ROad event Aware-
ness Dataset (ROAD) Dataset [29] and the ROAD Waymo Dataset [10]. The
ROAD is specifically tailored for autonomous driving research, comprising 122,000
frames extracted from 22 videos, each approximately 8 minutes long. The dataset
was collected using a camera mounted on an autonomous vehicle (AV). It features
two distinct sets of action labels. The first set, known as agent-level actions, de-
scribes the behaviors of various road agents (e.g., pedestrians, vehicles, cyclists)
in a scene, such as “waiting2Cross” or “overtaking”, particularly in static con-
texts where the AV is not in motion. The second set, referred to as AV-actions,
characterizes the autonomous vehicle’s own movements, independent of the ac-
tions of other agents in the scene, with labels such as “AV-on-the-move” and
“AV-stopped”. The ROAD Waymo Dataset builds upon the ROAD dataset by
incorporating data from the Waymo Open Dataset [10]. It consists of 198,000
annotated frames from 1,000 videos, each averaging 20 seconds in duration. This
dataset offers action annotations for various road agents, along with agent type
and semantic location labels. It contains 54,000 tracks, with over 3.9 million
bounding box-level agent labels and more than 4.2 million action and location
labels. The ROAD Waymo Dataset is designed for the robust evaluation of au-
tonomous driving models, particularly in complex and diverse driving scenarios
captured by Waymo’s autonomous vehicles. For evaluation, both datasets pro-
vide predefined splits for training, validation, and testing. Model performance
was assessed using classification accuracy (Acc. in %) and mean Average Preci-
sion (mAP in %).

3.2 Implementation Details

Our implementation is built using PyTorch 2.12 and PyTorch Geometric 2.1.
The proposed model architecture consists of two GNN layers that leverage multi-
aggregation of high-order statistics from neighboring nodes to effectively process
graph data. For each input video, we first extract spatio-temporal tube regions
based on the bounding boxes of objects in the video frames. These regions are
cropped across τ = 16 frames, centered at a middle frame as described in Sec-
tion 2.1. To ensure that the bounding boxes encompass the entire object ap-
pearance over the 16 frames, the bounding boxes are scaled by a factor of 1.5
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before cropping. Each object instance is then resized to a fixed dimension of
256 × 256, constructing a spatio-temporal tube represented as a 4D tensor of
size 16 × 256 × 256 × 3. These tensors are fed into a Kinetics pre-trained 3D
CNN feature extractor, specifically the S3D model [36], which outputs a 1024-
dimensional vector for each spatio-temporal tube. These vectors serve as nodes
in our constructed graph, with each node representing a distinct object. The
node features are then processed through our proposed high-order statistics-
based multi-aggregation GNN. To achieve a more meaningful and informative
representation, we employ a bottleneck mechanism between the two GNN layers.
In the first GNN layer, the input node feature dimension is reduced by half to
512. The output from this layer is then passed through a second GNN layer,
where the feature dimension is restored to 1024. Next, we apply feature-gated
attention pooling, as described in Section 2.3, directly to the 1024-dimensional
output features. Since we use element-wise multiplication in the gating mecha-
nism, the output dimension of the transformation weights is kept consistent at
1024, matching the output feature dimension. Our GNN model is trained using
the Adam optimizer with a learning rate of 1×104, a weight decay of 0.5, a batch
size of 32 sequences, and for 200 epochs. During ablation studies with different
backbone networks, which may have varying input node feature dimensions, we
maintain the bottleneck feature dimension between the two GNN layers at a
ratio of 0.5.

Table 1: Comparison of the results using features from different feature extractors on
the agent tube features. The best results are shown in bold.

Agent Tube Features S3D [36] R(2+1)D [34] SlowFast [11] 3D RES. [14]
Acc. mAP Acc. mAP Acc. mAP Acc. mAP

ROAD Dataset 55.87 34.43 60.42 34.80 56.44 30.26 47.69 19.26
ROAD Waymo Dataset 57.39 21.30 59.90 23.21 58.05 19.86 52.34 14.74

3.3 Performance Comparison

In this work, we establish a baseline by approaching the problem as a classifi-
cation task on the ROAD and ROAD Waymo datasets, utilizing various video
processing backbones. Table 1 compares the performance of four feature extrac-
tion methods like S3D [36], R(2+1)D [34], SlowFast [11], and 3D ResNet [14]
on the ROAD and ROAD Waymo datasets, highlighting the effectiveness of
our high-order GNN approach across different off-the-shelf backbones. R(2+1)D
demonstrates the highest accuracy on both datasets, with 60.42% on ROAD and
59.90% on ROAD Waymo, showcasing its strong ability to correctly identify ac-
tions in driving scenes. However, its mAP scores, which measure the precision of
ranking detections, decline significantly on the ROAD Waymo dataset (34.80%
on ROAD and 23.21% on ROAD Waymo). This indicates that while R(2+1)D
is effective at recognizing actions, it struggles with accurately ranking them in
more complex scenarios. S3D provides a more balanced performance, achieving
accuracies of 55.87% on ROAD and 57.39% on ROAD Waymo, with mAPs of
34.43% and 21.30%, respectively. Although S3D’s accuracy is slightly lower than
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R(2+1)D’s, its more consistent mAP scores suggest it offers better precision
across various actions, making it a reliable choice when both accuracy and pre-
cise ranking are important. SlowFast performs moderately well, with accuracies
of 56.44% and 58.05%, but its mAP scores (30.26% and 19.86%) suggest it is less
effective at accurately ranking detected actions. This may be due to its dual-
pathway design, which might not fully align with the specific dynamics of these
datasets. 3D ResNet shows the lowest performance, with accuracies of 47.69%
on ROAD and 52.34% on ROAD Waymo, and mAPs of 19.26% and 14.74%.
These results highlight its challenges in both identifying and accurately ranking
actions in complex driving scenes. In summary, R(2+1)D is most effective for
high accuracy in action identification, while S3D offers a balanced approach with
reliable precision in action ranking. SlowFast and 3D ResNet may require further
optimization to better handle the complexities of these driving scenarios.
Table 2 provides a comparison of action classification performance using Au-

Table 2: Performance comparison of S3D and R(2+1)D features computed for AV-
actions for ROAD and ROAD Waymo datasets.

AV Features
S3D [36] R(2+1)D [34]

Acc. mAP Acc. mAP
ROAD 87.91 41.71 87.93 40.14

ROAD Waymo 93.71 36.16 93.14 30.42

tonomous Vehicle (AV) features, focusing on the interactions between multiple
objects and the overall scene dynamics, across the ROAD and ROAD Waymo
datasets. On the ROAD dataset, both S3D and R(2+1)D models perform ex-
ceptionally well, achieving nearly identical accuracies of 87.91% and 87.93%, re-
spectively. However, S3D slightly outperforms R(2+1)D in terms of mAP, with
scores of 41.71% versus 40.14%. This suggests that while both models are adept
at recognizing driving actions, S3D is marginally better at ranking the detected
actions, which could be crucial in scenarios requiring precise action ordering. On
the ROAD Waymo dataset, which presents more complex and varied scenes, S3D
continues to lead with an accuracy of 93.71% and an mAP of 36.16%, compared
to R(2+1)D’s 93.14% accuracy and 30.42% mAP. The decrease in mAP for both
models on this dataset underscores the challenge of accurately ranking actions
in more diverse environments. Nevertheless, S3D’s superior mAP suggests it re-
mains more reliable for tasks where the accurate ranking of detected actions is
critical. Overall, these results demonstrate that S3D consistently provides bet-
ter action ranking, particularly in complex environments, making it a strong
candidate for scenarios requiring precision in both identification and ranking.
R(2+1)D remains highly accurate in action identification, which is beneficial in
contexts where correct detection is paramount.

3.4 Ablation Studies
Impact of varying aggregations. Table 3 analyzes the impact of different ag-
gregation strategies within our GNN on the performance of action recognition in
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Table 3: Accuracies and mAP for agent-level and AV-level actions on ROAD and
ROAD Waymo datasets, using different aggregation combinations with S3D [36] and
R(2+1)D [34] backbones. The best results are shown in bold.

Dataset
Aggregation combination(s) S3D [36] R(2+1)D [34]

Mean Med. Std m=3 m=4 Agent AV Agent AV
Acc. mAP Acc. mAP Acc. mAP Acc. mAP

ROAD

✓ 54.60 27.54 85.73 38.86 59.04 33.22 85.67 38.40
✓ ✓ 54.90 28.56 86.08 39.90 59.35 33.35 85.97 38.76
✓ ✓ ✓ 55.82 28.70 86.20 40.95 59.50 33.94 86.12 38.84
✓ ✓ ✓ ✓ 55.45 30.31 86.79 41.35 60.27 34.20 86.44 39.63
✓ ✓ ✓ ✓ ✓ 55.87 34.43 87.91 41.71 60.42 34.80 87.93 40.14

Road
Waymo

✓ 52.97 18.78 92.80 30.39 56.91 21.78 90.53 28.26
✓ ✓ 53.23 19.56 93.04 31.26 56.34 21.41 92.51 29.94
✓ ✓ ✓ 54.17 19.62 93.05 35.58 55.31 21.96 92.76 30.34
✓ ✓ ✓ ✓ 54.53 20.56 93.48 35.65 56.28 22.71 92.80 30.39
✓ ✓ ✓ ✓ ✓ 57.39 21.30 93.71 36.16 59.90 23.21 93.14 30.42

the ROAD and ROAD Waymo datasets, covering both agent-level and AV-level
actions. The results show that applying multiple aggregation techniques signif-
icantly improves performance for both S3D and R(2+1)D feature extractors.
For agent-level actions, both S3D and R(2+1)D feature extractors show no-
table improvements when multiple aggregation techniques are applied. On the
ROAD dataset, R(2+1)D achieves its highest accuracy of 60.42% and mAP of
34.80% with a combination of mean, median, standard deviation, and high-order
moments (m=3 and m=4). This combination allows the model to effectively
capture central tendencies, variability, and subtle patterns within the spatio-
temporal features. S3D also benefits from this approach, achieving an accuracy
of 55.87% and mAP of 34.43%, highlighting the importance of diverse statisti-
cal measures in enhancing node representations. A similar trend is observed for
AV-level actions. The most effective aggregation strategy for S3D, incorporating
mean, median, standard deviation, and high-order moments, results in an accu-
racy of 87.91% and mAP of 41.71% on the ROAD dataset. This approach helps
the GNN capture intricate patterns and subtle variations in the data, crucial
for distinguishing different actions in complex traffic scenarios. On the ROAD
Waymo dataset, the benefits of these aggregation strategies are even more ev-
ident. S3D achieves its highest performance with an accuracy of 57.39% and
mAP of 21.30% for agent-level actions, and 93.71% accuracy with 36.16% mAP
for AV-level actions. R(2+1)D similarly benefits, reaching 59.90% accuracy and
23.21% mAP for agent-level actions, and 93.14% accuracy with 30.42% mAP
for AV-level actions. The use of these diverse aggregation strategies within the
GNN framework enhances the model’s ability to represent spatio-temporal fea-
tures and manage the complexities of dynamic driving scenarios. By capturing a
broad range of statistical properties such as central tendencies, variability, and
high-order patterns—the model is better equipped to differentiate between var-
ious actions and interactions, leading to improved overall performance in both
agent-level and AV-level contexts.
Impact of different pooling mechanisms. The results in Table 4 demon-
strate the effectiveness of various pooling and aggregation methods in traffic
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Table 4: Impact of different pooling mechanisms on agent-level and AV-level actions
on ROAD datasets across varying architectures. The results are shown in bold.

Pooling
mechanism

S3D [36] R(2+1)D [34]
Agent AV Agent AV

Acc. mAP Acc. mAP Acc. mAP Acc. mAP
Global Mean 51.53 27.38 84.78 40.20 53.22 24.78 85.37 38.83
Global Sum 54.14 29.44 86.08 40.65 54.29 27.15 85.82 38.30
Global Max 49.23 26.38 84.08 39.30 56.74 30.36 85.67 37.85

Feature-Gated Attn. (Ours) 55.87 34.43 87.91 41.71 60.42 34.80 87.93 40.14

scene analysis, particularly on the ROAD dataset. In these scenarios, the choice
of pooling mechanism is crucial for capturing relevant spatio-temporal patterns,
which directly impacts the model’s ability to interpret dynamic interactions.
Global Mean pooling averages features across nodes, tends to oversimplify the
diverse interactions in traffic scenes. This simplification often results in the loss
of important information, as reflected in the lower performance metrics (e.g.,
51.53% accuracy and 27.38% mAP for Agent-level action using S3D). Global
Add pooling operation is more informative by summing features, can still miss
subtle yet important variations in the data, leading to only modest improve-
ments (e.g., 54.29% accuracy and 27.15% mAP for Agent-level action using
R(2+1)D). Global Max pooling operation is more effective at capturing the
most prominent features, fails to consider the nuanced interactions essential in
complex environments like traffic scenes. By focusing solely on maximum val-
ues, this method overlooks the broader context of traffic dynamics, resulting in
subpar performance (e.g., 49.23% and 56.74% for Agent-level action using S3D
and R(2+1)D respectively). In contrast, our Feature-Gated Attention (Attn.)
mechanism shows superior performance by dynamically prioritizing the most
relevant features within the graph. This method is particularly beneficial in traf-
fic scene analysis, where multiple agents interact in complex ways that require
careful consideration of context and relevance. By selectively attending to criti-
cal features, Feature-Gated Attention significantly enhances the model’s ability
to distinguish subtle variations in traffic behaviors and interactions. This leads
to much higher accuracy and mAP scores across both S3D and R(2+1)D archi-
tectures (e.g ., 55.87% accuracy and 34.43% mAP for Agent-level action using
S3D, 87.91% accuracy and 41.71% mAP for AV-level action using S3D). This
ablation highlights the effectiveness of attention mechanisms in GNNs for traffic
scene analysis, where accurately capturing the intricate dynamics of road users
is crucial for robust action recognition.

Table 5: Impact of feature dimension bottlenecking (Compression) between two GNN
layers on performance across different datasets and architectures.

GNN Intermediate
Feat. Dim.

S3D [36] R(2+1)D [34]
Road Road Waymo Road Road Waymo

Agent AV Agent AV Tube AV Tube AV
Acc. mAP Acc. mAP Acc. mAP Acc. mAP Acc. mAP Acc. mAP Acc. mAP Acc. mAP

W/o Compression 48.62 23.83 82.31 37.33 54.53 20.57 93.69 36.10 54.29 27.31 83.57 36.14 53.63 20.28 92.74 29.76
W Compression (Ours) 55.87 34.43 87.91 41.71 57.39 21.30 93.71 36.16 60.42 34.80 87.93 40.14 59.91 23.21 93.14 30.42
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Impact of feature compression. The results in Table 5 highlight the sig-
nificant performance improvements achieved by applying feature compression
(bottlenecking) between GNN layers across different datasets and architectures.
For example, in the ROAD dataset using the S3D architecture, feature compres-
sion boosted the accuracy for Agent actions from 48.62% to 55.87% and mAP
from 23.83% to 34.43%. Similarly, in the ROAD Waymo dataset, the accuracy
and mAP for Agent actions increased from 54.53% to 57.39% and from 20.57%
to 21.30%, respectively. These improvements are consistent across both S3D and
R(2+1)D architectures and various action types, including agent and AV level
actions, demonstrating that feature compression consistently enhances model
performance. Technically, this enhancement is due to the bottleneck enforcing
more efficient and discriminative feature representations, similar to the compres-
sion phase in autoencoders. By reducing the feature dimensions passed between
layers, the GNN focuses on capturing the most critical aspects of the input data,
which is vital for accurately recognizing complex spatio-temporal dynamics in
traffic scenes. Moreover, feature compression helps mitigate overfitting, partic-
ularly with large and noisy datasets, by preventing the model from learning
irrelevant correlations. Overall, applying feature compression between GNN lay-
ers results in a more efficient and robust model, improving generalization and
performance in challenging environments like traffic scenes.

4 Conclusion
In conclusion, this paper presents a comprehensive framework that leverages
High-Order Evolving Graphs and advanced GNNs to enhance the modeling and
representation of traffic dynamics in autonomous driving applications. Our ap-
proach integrates temporal bidirectional bipartite graphs with 3D CNN fea-
tures, multi-aggregation strategies, and attentional mechanisms as part of in-
ductive learning. This combination effectively captures complex spatio-temporal
interactions within dynamic traffic scenes, significantly improving both the ac-
curacy and detail in traffic scene analysis. The effectiveness of our method is
demonstrated through extensive experiments on the ROAD and ROAD Waymo
datasets, where it establishes a comprehensive baseline for further developments
in traffic behavior analysis. The results highlight the importance of integrat-
ing detailed spatio-temporal features with advanced graph-based techniques to
achieve accurate and scalable traffic behavior analysis.
Acknowledgement: This research was partially funded by the UKRI EPSRC
project ATRACT (EP/X028631/1): A Trustworthy Robotic Autonomous Sys-
tem for Casualty Triage.
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