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Abstract. Fully sparse 3D detection has attracted an increasing inter-
est in the recent years. However, the sparsity of the features in these
frameworks challenges the generation of proposals because of the lim-
ited diffusion process. In addition, the quest for efficiency has led to
only few work on vision-assisted fully sparse models. In this paper, we
propose FSMDet (Fully Sparse Multi-modal Detection), which use vi-
sual information to guide the LiDAR feature diffusion process while still
maintaining the efficiency of the pipeline. Specifically, most of fully sparse
works focus on complex customized center fusion diffusion/regression op-
erators. However, we observed that if the adequate object completion is
performed, even the simplest interpolation operator leads to satisfactory
results. Inspired by this observation, we split the vision-guided diffusion
process into two modules: a Shape Recover Layer (SRLayer) and a Self
Diffusion Layer (SDLayer). The former uses RGB information to recover
the shape of the visible part of an object, and the latter uses a visual
prior to further spread the features to the center region. Experiments
demonstrate that our approach successfully improves the performance
of previous fully sparse models that use LiDAR only and reaches SOTA
performance in multimodal models. At the same time, thanks to the
sparse architecture, our method can be up to 5 times more efficient than
previous SOTA methods in the inference process.

Keywords: RGB-LiDAR Fusion · Fully sparse 3D detection · Shape
recovery

1 Introduction

The 3D detection of objects using LiDAR has made great progress in the past
few years. However, the vast majority of dense detector, whether they be anchor-
based [25,4,41,24,15,21,16,2] or anchor-free [42,36] works on dense Bird’s Eye
View (BEV) representations which are costly to process. For instance, for ev-
ery doubling of the detection range, the computational cost will increase by
2-4 times[7]. To overcome this issue, fully sparse detectors have witnessed an in-
creased interest in recent years. Different from point-based methods[26,23,22,27],
which perform time-consuming point neighborhood aggregation, fully sparse
models tend to introduce a voxel or a point-wise segmentation to significantly
reduce the computation cost early in the network.
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Fig. 1: A Vision-Centric view for LiDAR-RGB fusion in a fully sparse framework.
Our proposed FSMDet integrates image features without any parameters for 2D
tasks. The feature diffusion is guided by RGB features. Prop. and D.A. stand for
proposals and deformable attention. The orange arrows represent the optional
steps for models in the same categories.

However, sparse models come also with their issues. Two main questions in
fully sparse detectors are center feature missing and image signal fusion. Specif-
ically, for the detectors that adopt a dense detection head on the BEV map, the
normal pipeline first feeds the voxelized lidar signal to backbone, which always
consists of a stack of submanifold sparse convolution layers[10]. However, this
step won’t change the occupancy of voxels. After the backbone, the z-axis(height)
will be flattened to obtain the BEV map, which will still be sparse. Normally,
the 2D CNN will process the BEV maps to diffuse the features to the empty
voxels and then the detection head can generate the proposals for every non-
empty voxel. The feature located in the voxel at the object’s center will be the
main candidate to regress the predicted box of the object. However, this method
won’t solve the issues created by missing voxel center feature in a fully sparse
pipeline. Many fully sparse pipelines propose modules that vote the center of ob-
jects directly[7] or use the voted center as virtual voxels[8] to further aggregate
features. However, this is a complex strategy that requires several hand-craft
parameter settings which makes the model far from satisfactory in terms of de-
ployment and speed of inference. It is worth noting that the recently proposed
SAFDNet[37] aims at achieving to achieve this goal through a foreground-only
feature diffusion approach, but this parameter-free operation makes it difficult to
ensure not only the accuracy of the diffusion but also the quality of the diffused
features.
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In this work, we demonstrate that vision information can be used to guide
the feature diffusion in a 3D detection framework. Only a few works[5,33,18]
tried to introduce the RGB features into a fully sparse pipeline. However, most
of them need a 2D segmentation or detection head to localize the objects from
the image signal. These modules which include RPN and NMS operations limit
the overall inference speed of the 3D detection framework. In other words, 2D
detection is only intended to be used as an assist to the subsequent 3D detection
results. Such a simple merged network tends to introduce a large amount of
parameter redundancy. This inefficiency in RGB fusion approaches in fully sparse
networks led us to revisit how to introduce RGB information while maintaining
architectural sparsity. This paper introduces the FSMDet network (Fully Sparse
Multi-modal Detection), a straightforward and efficient multi-modal 3D detector,
that only keeps the necessary parameters for the image-branch and retains the
sparsity of the structure.

As shown in Fig 1, our proposed method is as follows: the voxelized LiDAR
features interact with RGB features through deformable attention operations to
select the foreground RGB features. The foreground voxel features are diffused
in 2 ways: using the shape-recovery layer (SRLayer) and the self-diffusion layer
(SFLayer). Specifically, considering that the diffusion process changes the occu-
pancy, we believe that the process of an ideal feature diffusion should essentially
be like shape completion. From an idealized test, we experimentally proved that
for a fully sparse model, even if there is no specific design for the center feature
diffusion, we can still get nearly 100% accuracy with the completed objects. This
conclusion can also be extended to most point-based methods. However, since
the full shape of objects is not always available in the image, it is not a trivial
task to make a network predicting the full shape of objects. Therefore, we further
tested the visible part completion with color information. The result shows that
this is even better for small objects with almost the same performance in other
categories compared with the full-shape competition.

The experiment shows that a shape recovery operation at the early stage of
the network is essential for accuracy. Inspired by this observation, the SRLayer
is used at an early stage of the network to recover the shape of the visible part
with features from the camera and the LiDAR modalities. The self-diffusion
layer (SDLayer) is performed before the sparse detection head, which expands
the feature at the boundary of objects to the center, thus solving the center
feature estimation problem mentioned before.

Our proposed FSMDet network efficiently and effectively introduces visual
information into a fully sparse detector: on a desktop GPU, without any CUDA
kernel or deployment optimization, our method achieve a competitive accuracy
comparing with SOTA fusion-based solutions with up to 5.3x speedup.

2 Related Work

Fully sparse 3D detection. A premise that has sometimes been overlooked
in past 3D detection methods[4,24,19] is the different importance of differentiat-
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ing foreground objects from the background which significant impact computing
resources. FSD [6] first proposed a solution with a segmentation head to distin-
guish objects from background signals and a voting network to regress the center
of objects. Subsequently FSDv2[8] improves the performance by introducing vir-
tual voxels and a multi-stage pipeline. Later, the FSD++[9] utilized multi-frame
information to improve the segmentation process. Considering the complexity of
the pipeline, VoxelNeXt [3] adopt a relatively simple structure with extra down-
sampling steps, which get better results with lower latency. The SAFDNet[37]
proposed another strategy that used a 2D sparse convolution layer named AFD
to diffuse the foreground lidar signal. Although most of the works achieved the
SOTA performance, none of the mentioned works introduced multi-modal signal
analysis into the fully sparse 3D detection pipeline.

Object Completion in 3D detection. The concept of object completion
starts from lidar-based 3D detection: With a sub-network recovering the miss-
ing signal of distant or occluded objects, the performance of 3D detection can
be boosted. Specifically, BtcDet[34] used cylinder coordination to voxelise the
space and then try to recover the missing signal by predicting the occupancy of
voxels. SPG[35] tries to use an unsupervised method to expand the foreground
voxels. Both PG-RCNN[14] and PC-RGNN[38] tried to densify the foreground
region after proposing the region in the first stage. Sparse2Dense [30] proposed
a new way to complete the object in the hidden space by an explicit optimiza-
tion. This same idea is behind many lidar-RGB fusion solutions. SFDNet[32]
and VirConv[31] introduce dense pseudo points to complete the objects and the
latter further proposed different modules to remove possible noise. Distinct from
these 2 works, WYSIWYD[20] introduces a mesh deformation method that only
completes the depth of foreground parts visible in the RGB image.

3 FSMDet

3.1 Preliminary

Previous works in fully sparse detection [8,37,7] attribute its performance flaw
to center feature aggregation, and then proposed different methods to improve
the performance of this module. In this section, we introduce a series of ideal
experiments to show that another important factor that affects the performance
of a sparse 3D detector is the density of the foreground objects point cloud
representation. In this first experiment, our objective is to test the performance
of sparse models with plain center feature aggregation modules under different
lidar inputs. Note that when choosing the models to be tested, it is important
to select ones that do not change the center voxels’ occupancy. This way, the
change in performance can be attributed to the different lidar inputs.

With a 3D ground truth box Bi of object i, we can obtain the lidar point
set in this box, denoted by Li. Using the full shape(FS) object point completion

methods described in [34,20], we can obtain a densified object, denoted by L̃i,
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Models Comp
Car 3D APR40 Car BEV APR40 Ped 3D APR40 Ped BEV APR40

EasyMod. Hard EasyMod. Hard EasyMod. Hard EasyMod. Hard

PointRCNN
VP 99.9 99.6 97.2 99.9 99.6 97.2 85.3 77.9 86.2 68.1 80.9 71.2
FS 97.2 97.2 97.1 97.2 97.2 97.1 77.8 72.8 70.3 80.3 74.8 71.1

IA-SSD
VP 99.9 99.7 99.4 99.9 99.3 99.3 75.5 71.3 66.4 77.5 75.1 70.3
FS 99.7 99.4 99.4 99.6 99.2 99.4 71.9 69.7 86.2 74.8 74.3 72.8

FSD-V1
VP 99.9 99.7 99.7 99.9 99.7 99.7 87.2 80.1 72.1 89.9 82.7 73.6
FS 99.9 99.9 99.9 99.9 99.9 99.9 81.7 77.9 71.1 83.3 77.1 72.9

Table 1: The performance of different sparse models with completed objects
on the KITTI validation set. FS and VP stand for full shape and Visible Part
completion respectively.

as shown in Fig 3. Our experiment, under ideal condition, consists then in com-
pleting the full shape of all ground-truth foreground objects in a scene. For this
experiments, we use 3 classic models: IA-SSD[39], Point-RCNN[26], and FSD[7].
As shown in the FS line of Table 1, even for these models without a modern cen-
ter feature aggregation module, good performance can be obtained if the objects
are completed. This suggests that even the most basic center regression method
is sufficient for well-completed objects to give us good results in 3D detection.

However, although full-shape completion can lead to a good results, it is
still a non-trivial task to recover the full shape either from the image or the
lidar signal. Therefore, we further use the obtained L̃i to generate the visible
part of objects, denoted by L̂i. Specifically, for every single Li in the dataset, a
unique 2D instance Ii on the image can be identified. First, we adopted a sur-
face reconstruction from the Possion[13] method, and then placed the obtained
hull(reconstructed surface), denoted by Mi in 3D space. Based on the known
camera intrinsic matrix, extrinsic matrix, and the pixel 2D coordinates of pixels
in the region Ii, a ray casting model can be established. Note that since the rays
from the pixel on the boundary sometimes miss the object, a volume expansion
coefficient δ is used here to make sure there is always a bijection from the pixel
set to the depth set. This process is illustrated in Figure 2.

With the equation of line Tc and Mi, the distance traveled by a ray of light
from point c when it arrives on the mesh can be expressed as |δMi ∩ Tc − ci|.
Considering the slope of TC , the depth of the point on the mesh hit by the light
to the camera plane is di. Here · refers to scalar multiplication.

dc = |δMi ∩ Tc − ci| · |xc| (1)

After estimating the depth of every pixel in the region Ii, we get a dense
visible surface of the object, denoted by L̂i, as shown in the left most sub-figure
of Fig 3. Replacing the original L̃i with L̂i, we repeated the same experiment
on the selected models in VP lines of Table 1, show that even with only visible
part completion, the upper boundary of these models is still high enough. A



6 Tianran et al.

Fig. 2: The ray casting model for visible part ground truth generation. All cal-
culations are performed in LiDAR(3D space) coordination. Here ci stand for the
location of pixel c in 3D space.

Fig. 3: From sparse lidar signal to visible part ground truth: we first obtain the
full shape objects and then reconstruct the surface. With a ray-cast model, we
can paint the color information onto the object’s surface and filter out the non-
visible part.

counter-intuitive fact that also needs to be mentioned is that VP is even more
suitable for small objects such as pedestrians.

During the training, the completion of objects causes a change of occupancy,
or in other words, it diffuses the point features. This experiment shows that
the detection results are satisfactory when the object shapes are adequately
completed, even with a vanilla design for the center regression or center feature
aggregation modules. This inspired us to split the feature diffusion into two steps:
the shape recovery diffusion and the diffusion of features to the object center.
Since only the visible part of objects is available on the image, here we use VP
to supervise the first-step diffusion.

3.2 Overall structure

In Section 3.1, we experimentally demonstrated that the visible part completion
of the foreground object in the LiDAR signal improve the detection results de-
spite the diffculty of center prediction. Based on this result, we introduce the
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Fig. 4: Proposed pipeline: We complete the diffusion of features in two steps, the
SRLayer uses RGB features to recover the visible part of the contours of objects
while the SDLayer diffuses the features to the center of objects. D.A. stand for
the deformable attention. The operation related to color features is marked in
red.

shape recovery module, which diffuses the features to occupy near voxels, at
an early layer of the network. Our experiments will also demonstrate that it’s
beneficial to do this step at an early stage.

Specifically, as shown in Fig 4, we use SRLayer (Shape Recover Layer) and
SDLayer (Self Diffusion Layer) to do the two steps mentioned respectively. After
the voxelization of the space, Submanifold sparse convolution[11] with residual
design was used as the basic block to process the LiDAR data. As in work [37],
we call these stacked sparse convolution block SRB(Sparse Residual Block). We
choose 1

4 of the original size to perform shape recovery and color features aggrega-
tion as a good balance between efficiency and performance. With the coordinates
of points centroid in the different voxels and the calibration information, we fuse
the voxel and image features with a deformable attention operator and replace
the original feature. These augmented features will be further process with SRBs,
and then a voxel classification head will be applied to get the foreground parts of
the scene. The fused features and the foreground masks are used as the input of
our SRLayer. SRLayers use 2D VP object completion as the supervision signal.

The output of SRLayers will go through the SRBs for further downsampling.
Finally, the BEV transformation squeezes the feature map to get a 2D represen-
tation of the space, the SDLayer will be used to deliver the feature to the center.
The output size of the proposed cross-modality backbone will be 1

8 of the width
and length of the original input.
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3.3 Proposed Method

Deformable attention for feature fusion. Let V = {Vi, Vfi , ci}
|V |
i=1 represent

all of the non-empty voxels in a sparse feature map, Vi is the indices of the voxel
i, Vfj stand for the features in the voxel and ci is the centroid of the LiDAR
points in this voxel. With the camera intrinsic and extrinsic matrix, the 3D-2D
transformation can be denoted as P, to obtain the 2D-pixel coordinates pi, as
shown in equation 2.

pi = P(ci) (2)

Normally, we will interpolate the image features to the original size and
acquire the image feature for points in 2D coordinates. However, as pointed out
in previous lidar segmentation work[40], the calibration of different modalities is
not always reliable. Therefore the correspondency between semantic information
in down-sampled image feature maps and voxel centroid point is not guaranteed.
For this reason, we introduce deformable attention in this step to allow the
network to freely select features near pi, following the design of LoGoNet[17]
with a minor modification.

Specifically, Vfi will be used as query of the attention calculation. The image

features sampled from the pixels around pi, denoted by R̂i, will be used as Key
and Value. The image features located at pi and all of its 3-order neighbour
will be noted as Rpi

and R3
pi
, with the image map itself denoted by R. With M

attention head and K sample points, we can obtain R̂i from Equation 3.

∆pmki = MLP (MLP (R3
pi
) · Vfi)

Rmi = G(R,pi +∆pmki)

R̂i =

M∑
m=1

Wm

[
K∑

k=1

Amik · (W ′
mRmi)

] (3)

The G(a, b) represents the operation of obtaining the features of a at location
b. The W ′

m, Wm stands for the trainable weight, and Amik stands for attention
weight. In the original design, the ∆pmki was only decided by the LiDAR feature
Vfi , however, here we add an interaction between Vfi and all features around
Rpi

, which will help to identify the proper features to be aggregated.

Shape Recover Layer. The augmented features will replace the original one
and is sent to the next SRBs. Note that at this stage, we keep the original fea-
ture map size. The obtained map is then sent to a classification head to split the
foreground voxels from the background information. Considering the large space
difference between the various classes of objects, we set a category number S for
the classification. Using M to represent the index of foreground voxels, the M

and processed voxels V ′ =
{
Vi, V

′
fi
, ci

}|V |

i=1
will be sent to the SRLayer.
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Fig. 5: Illustration of Shape Recover Layer and Self Diffusion Layer. We use the
sparse signal to recover the shape of objects. After Shape recovery, we expand
the boundary voxels along the ray direction, the center point will be naturally
located in this area.

With the foreground voxels that are denoted by V ′
o =

{
Vi, V

′
fi
, ci|Vi ∈ M

}|M|

i=1
,

we first need to calculate the possible direction of diffusion. A possible direction
should ensure that the voxel in that direction is visible on the image and secondly
that the next two voxels in that direction are not occupied. As shown in the left
part of Fig 5, all voxels in V ′

o will have 4 candidate directions to diffuse, but here
only 2 of them are possible for diffusion (marked with red). Specifically, for a

specific voxel in V ′
o , denoted by

{
Vt, V

′
ft
, ct

}
, which can be projected to a pixel

located at pt, we use V∅ to denote all invisible voxels. The possible diffusion
direction Jt can be described in Equation 4. Here Vj is the nearest non-empty
voxels on direction Jt.

Jt = {Jti|Jti ∩ V∅, ∥Vt − Vj∥ < 2}4i=1 (4)

For every Jti, we use V ′
ft

and the direction-specific image features (as shown

in the bottom of Figure 5), denoted by Ri
pt
, to regress the expand distance dt. For

the empty voxel in range dt alone the direction Jt, denoted by
{
Vt+d, V

′
ft+d

, ct+d

}
,

the V ′
ft+d

will be obtain by equation 5.

V ′
ft+d

= MLP (
⋃

N(pt+d,d)

Ri
pt+d

) (5)

Here N(x, l) and
⋃

stand for the l-order neighborhood of pixel x and the con-
catenation operation of the neighboring features. With the new occupied voxels,
the V ′ will be sent to the next SRB to process the features further.
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The Shape Recover Layer needs supervision from the generated VP ground
truth. Considering the computational complexity, we only apply the supervision
on the BEV plane. Specifically, after voxelizing the VP ground truth, we can get
the ground truth for the shape recovery, denoted by Vgt. Using V̂ to represent
the score of predicted recovery voxels, the loss can be written as Equation 6.

L =

S∑
i=1

αj

3∑
j=1

focal loss(V̂ij , Vgt) (6)

Note that the boundary voxels only make up a small portion. Here we use a
multi-class focal loss to calculate if the predicted occupied voxel cannot cover
the boundary ground truth. If it is located in the 2D box, it won’t be treated
as negative samples. Here we further split the voxel predicted for different size
objects into 3 categories: the predicted voxels located at the boundary correctly,
the predicted voxels not situated at the boundary but in the box, and the others.
Specific αj will be used to scale these different cases here.

Self Diffusion Layer. Before being sent to the detection head, the sparse signal
needs to be further diffused to the center of objects. Note that since we have
identified the invisible voxels V∅, we can directly diffuse the features along the
ray across the occupied voxels. As we have shown in the right part of Figure 5, in
most cases, the center can be naturally covered. Considering the size of different
objects, the scope parameter σ0 of this diffusion depends on the result of the
classification head. Following SAFDNet[37], we also adopt an adaptive method
in which for larger objects, the diffusion distance alone ray casting will be larger
than that of small objects. However, when the objects are occluded, the diffusion
along the ray-casting direction will miss the center. Therefore, considering the
size of voxels here, we also set a parameter σ1 to control the diffusion of features
perpendicular to the direction of the ray casting.

4 Experiments

4.1 Dataset and Metrics

We conducted experiments on the nuScenes [1] dataset for a comparison. The
nuScenes dataset was collected with 6 cameras, a radar sensor, and a 32-beam
LiDAR sensor under different weather and illumination conditions. The model
proposed was evaluated by the official evaluation script with NDS and MAP as
index.

4.2 Implementation Details

We used the OpenPCDet[28] as the framework to implement the mentioned de-
sign. All experiments were performed on RTX3090, we used 8 as batch size on 4
GPUs for training and 1 batch size for inference speed test. Training in all exper-
iments lasted for 20 epochs. During training, in addition to random rotation and
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translation of the point cloud signals and random cropping and normalization
of the image signals, we change the GT-sampling commonly used in the lidar-
based model to the multimodal GT-sampling proposed in PointAugmenting[29].
We use ResNet[12] pre-trained on NuImage as the image backbone. The vol-
ume expansion parameter δ was set to 1.15 to ensure all rays from every pixel
wouldn’t miss the object. d in Equation 5 was set to 2. Considering the size of
different objects occupied, we set σ0 = 6 and σ1 = 4. We set the α0 = α1 = 0.5,
α2 = 1 to scale the loss mentioned in Equation 6.

4.3 Main results

Methods mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FSDv2 65.4 70.8 0.270 0.248 0.272 0.207 0.187
SAFDNet 68.3 72.3 0.251 0.242 0.311 0.258 0.127

SparseFusion 71.0 73.1 0.277 0.247 0.270 0.253 0.188
MSMDFusion 69.2 72.0 0.283 0.254 0.282 0.252 0.185
BEVFusion 67.3 70.7 0.286 0.255 0.313 0.251 0.186
FSMDet 70.0 72.2 0.285 0.251 0.296 0.254 0.179

Table 2: Performance Comparsion with SOTAmodels on nuScences validation
set. The best results are shown in bold. ↑ higher is better, ↓ lower is better.

We compared the inference speed with recent SOTA models. Since we did
not need any parameters for tasks on the image plane, our proposed method
takes only 25%(as a minimum) of the time the SOTA solutions use to take
while maintaining a decent detection performance. As shown in Table 3, our
proposed method obtained 70.1 mAP and 72.1 NDS in nuScenes Dataset. This
performance is only 2.4% to 3.8% less than the SOTA but we only used 18% to
47% of the inference time that is needed for SOTA models.

Model Modality Sparsity Image Result FPS mAP NDS

SAFDNet LiDAR ✓ N/A 15.7 68.3 72.3
SparseFusion LiDAR+RGB ✓ ✓ 5.3 71.0 73.1
MSMDFusion LiDAR+RGB ✕ ✕ 2.1 71.4 73.9
BEVFusion LiDAR+RGB ✕ ✕ 8.1 67.3 70.7

FSMDet LiDAR+RGB ✓ ✕ 11.2 70.0 72.2

Table 3: Efficiency comparison, our proposed model achieves a balance point
between inference speed and performance.
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4.4 Ablation Study

In Table 4, we break down the performance boost in the proposed model. Here
the D.A Color and Proj Color stand for the two different methods to introduce
RGB color features: the deformable attention or direct projection. As shown in
the table, the parameter-based solution benefits from the contribution of these
models. In experiments on Table 4, if we do not apply the SDLayer, the ADF in
SAFDNet[37] is used.

Models D.A Color Proj Color SRLayer SDLayer mAP NDS

FSMDet ✓ - - - 67.9 70.4
FSMDet - ✓ - - 67.6 70.8
FSMDet ✓ - ✓ - 69.8 71.5
FSMDet ✓ - ✓ ✓ 70.0 72.2

Table 4: The verification of the effect of each module on the model on the final
accuracy

Here in Table 5, we compare the effect of different positions of the SRLayer
on accuracy. If we insert the shape recovery operation too early, the shallow
representation of LiDAR features can barely help the expansion regress. On the
other hand, if the SRLayer is too close to the SDLayer, the feature of the newly
occupied layer also cannot aggregate the nearby features very well.

Modules Block-1 Block-2 Block-3 Block-4 mAP NDS

SRLayer ✓ - - - 61.2 63.6
SRLayer - ✓ - - 70.0 72.2
SRLayer - - ✓ - 68.7 70.9
SRLayer - - - ✓ 63.1 67.2

Table 5: Different stages to insert the Shape Recover Layer

5 Conclusion

In this work, we proposed a cross-modality method for the RGB-LiDAR fusion
in a fully sparse framework. Starting from the idealized experiment which reveals
that the core of center regression for detection models should be the visible part
completion, we designed the SRLayer to achieve this step with the guidance from
the image features. This way, the diffusion alone of the ray from the image plane
can naturally cover the center of objects in most cases. As the experiments prove
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the potential of our method, we hope the FSMDet can promote the research in
data fusion for fully sparse models.
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