
Cross-Spectral Gated-RGB Stereo Depth Estimation

Samuel Brucker1 Stefanie Walz2 Mario Bijelic1,3 Felix Heide1,3

1Torc Robotics 2Mercedes-Benz 3Princeton University

Abstract. Gated cameras flood-illuminate a scene and capture the time-gated
impulse response of a scene. By employing nanosecond-scale gates, existing sen-
sors are capable of capturing mega-pixel gated images, delivering dense depth
improving on today’s LiDAR sensors in spatial resolution and depth precision.
Although gated depth estimation methods deliver a million of depth estimates
per frame, their resolution is still an order below existing RGB imaging meth-
ods. In this work, we combine high-resolution stereo HDR RCCB cameras with
gated imaging, allowing us to exploit depth cues from active gating, multi-view
RGB and multi-view NIR sensing – multi-view and gated cues across the entire
spectrum. The resulting capture system consists only of low-cost CMOS sensors
and flood-illumination. We propose a novel stereo-depth estimation method that
is capable of exploiting these multi-modal multi-view depth cues, including the
active illumination that is measured by the RCCB camera when removing the
IR-cut filter. The proposed method achieves accurate depth at long ranges, out-
performing the next best existing method by 39% for ranges of 100 to 220 m in
MAE on accumulated LiDAR ground-truth.
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1 Introduction

Depth estimation has become a cornerstone sensing modality for 3D scene understand-
ing in a wide range of applications such as perception and planning in autonomous driv-
ing and robotics [32,47,82]. Today’s fully-autonomous robots mainly rely on scanning
LiDAR for depth estimation [68,71]. However, at ranges greater than 100 m, the spatial
resolution of existing sensors, with a few points per pedestrian, is not sufficient for se-
mantic understanding. Furthermore, both frequency-modulated as well as time-of-flight
LiDAR systems have proven to be unreliable in the presence of backscatter [6]. While
innovations in LiDAR technology such as MEMS scanning mechanisms [81] and ad-
vanced photodiode systems [77] have substantially lowered costs and enabled the devel-
opment of sensors with approximately 100 to 200 scanlines, they still fall short in com-
parison to the vertical resolution offered by modern HDR megapixel cameras, which
can exceed 10k pixels. Wide-baseline RGB stereo depth estimation methods overcome
this issue by providing depth maps at image resolution, but struggle in low-light scenes
and texture-less regions. Recently, gated imaging [3, 7, 10, 11, 23, 29] has emerged as
a potential alternative sensor modality for 3D detection and depth estimation, offering
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Fig. 1: RCCB cameras (top row) capture 8 Mpix passive RGB images. Gated cameras (bottom
row) record Time-of-Flight data of a scene by combining active flash illumination and analog
gated readout. Both sensors are complementary, with distinct strengths depending on the scenario.
RCCB cameras excel in daylight (a) with high dynamic range, resolution and color. At night (b,
c), gated images (gated slices here RGB-color coded by mapping each slice to one RGB color)
provide strong depth cues and maintain consistent scene illumination through active illumination.
This work integrates both modalities to estimate depth accurately in all ambient illumination
conditions.

the capability to overcome low LiDAR-resolution, while providing comparable accu-
racy [24, 78, 80]. Operating in the near-infrared spectrum, gated imaging systems com-
bine CMOS sensors with active flash illumination and analogue gated readout. This ap-
proach is robust to low-light and adverse weather conditions [7]. For depth prediction,
Gated2Depth [24] employs three gated slices in a neural network which is trained via
a combination of simulation and LiDAR supervision. Following this, Walia et al. [78]
proposed a self-supervised training approach resulting in higher-quality depth maps.
Walz et al. [80] recently introduced Gated Stereo, employing a wide-baseline stereo-
gated configuration for depth estimation. These methods outperform scanning LiDAR
systems in depth resolution, precision, and robustness to backscatter in fog, rain and
snow. While these methods successfully outperform LiDAR in depth sensing, they are
constrained by the gated imager’s megapixel resolution and lack of color information.
This results in diminished details, particularly noticeable at long distances. RGB-only
depth methods yield high-resolution depth maps, but these are not metric and lack the
precision of LiDAR-based depth measurements.

In this work, we close this gap by proposing a low-cost CMOS-only sensing method
that combines multi-view RGB sensing with gated cameras, exploiting active and multi-
view cues across the visible and NIR spectrum. Specifically, we propose an NIR gated
camera in conjunction with an HDR RCCB camera without an IR-cut filter present.
RCCB cameras incorporate clear channel filters whereas conventional RGGB Bayer
color filters feature the green channel, which enhances their sensitivity in low-light
conditions. This joint approach allows us to use the spectral overlap for estimating
high-resolution depth maps at RCCB-camera resolution of 8 megapixels, an order of
magnitude higher than the gated imager resolution. Previous works have recognized the
capabilities of cross-spectral imaging due to the complementary information coming
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from different sensor modalities [8,9,28,66]. For depth estimation, however, combining
images from different spectra has proven to be difficult due to the differing appearance
of the images [55, 75, 92]. Our approach combines two multi-view stereo views across
the spectrum and an active illuminator (visible by both) by fusing the features of both
modalities of the respective viewpoints. Specifically, to recover depth, we propose a
stereo depth estimation method that incorporates a novel cross-spectral fusion module
that leverages intermediate depth outputs for accurate registration of feature maps from
both modalities, a pose refinement step, and attention-based feature fusion. The merged
features encompass complementary data from both spectra, enabling their use in the
stereo network to generate accurate depth maps in any lighting conditions.

We validate our method on automotive driving data in urban, suburban and highway
environments in varying illumination, and we find that the method compares favorably
to existing active and hybrid methods. We also demonstrate that the high-resolution
depth enables new applications, such as detecting small lost cargo objects in high-way
scenarios that cannot be resolved by conventional methods.
Specifically, we make the following contributions:

– We propose a novel cross-spectral depth estimation approach that recovers high-
resolution dense depth maps from multi-view and time-of-flight depth cues across
the visible and NIR spectrum.

– We introduce a novel cross-modal stereo network that jointly estimates the depth
from passive and active RCCB and gated features and a semi-supervised training
scheme to train the estimator.

– We validate that the method produces accurate depth maps on accumulated LiDAR
point-clouds up to 220 m, outperforming existing methods by 39% in MAE for
long ranges ≥ 100 m. We show that these high-resolution depth estimates enable
new applications such as lost cargo detection.

2 Related Work

Depth Estimation from Monocular and Stereo Intensity Images. Depth estimation
from intensity images has been thoroughly investigated using various modalities, from
single-image captures [21, 26, 51, 52] to stereo images [4, 13, 53, 88] and cross modal
representations using intensity images augmented with sparse LiDAR data [16,90]. Fur-
ther refinement techniques were introduced, enhancing the predicted depth maps and
increasing resolution [2, 60, 63, 91]. Existing work has investigated various loss forma-
tions [17, 21, 22, 26, 56, 57, 65, 76, 89], neural architectures [4, 20, 22, 26, 51, 53, 88] and
introduced consistencies [20, 21]. To exploit large unlabeled datasets, self-supervised
approaches [20–22, 26, 93] exploiting stereo- [20, 21] and temporal-consistencies [22,
26, 93]. Unfortunately, these methods do not resolve the need for dense depth ground-
truth for high-quality depth estimation [13, 13, 19, 34, 38, 51, 52, 58, 59]. To this end,
existing methods rely on sparse LiDAR measurements as ground-truth. However, using
LiDAR measurements as direct inputs [16, 31, 61, 72, 73, 84, 90] for both supervised
training and inference can result propagating temporal LiDAR distortions and scan pat-
tern artifacts.
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Depth from Time-of-Flight. Unlike depth estimation from intensity images, Time-of-
Flight (ToF) sensors determine depth by measuring the time it takes for emitted light
to return to the detector. Acquisition approaches can be classified into correlation ToF
cameras [27, 40, 41], pulsed ToF sensors [68], and gated illumination with wide depth
measurement bins [23, 29]. Correlation ToF cameras use flood illumination to gauge
depth from the phase difference between emitted and received light pulses, offering
high spatial depth resolution [27,40,41]. However, these sensing modalities struggle in
outdoor environments due to sensitivity to ambient light. Pulsed ToF sensors measure
the round-trip time of a single light pulse to a scene point, yielding high-depth accu-
racy [68], however, rely on scanning that compromises spatial resolution. Moreover,
these sensors degrade in fog or snow because of backscatter [6, 12, 36]. Gated cam-
eras combine high resolution CMOS imagers with microsecond exposure times, inte-
grating pulsed flood-illumination with adjustable delays. Through this temporal gating,
backscatter is effectively reduced [7], and coarse depth is reconstructed [3, 10, 11]. Ex-
tracting more refined depth initially focused on analytical methods [42,43,85], Bayesian
methods [1, 67] and deep neural networks [24, 78] excel in low-light and outdoor sce-
narios. Gruber et al. [24] predict depth using a reconstruction network rivaling con-
ventional stereo models, while Walia et al. [78] proposed a refined self-supervised
method. Later, Walz et al. [80] combined two gated imagers, optimizing depth esti-
mation through multi-view cues. All of these methods are designed for gated imagers
only, compromising resolution compared to RGB imagers and in scenarios when the
NIR laser power is low compared to ambient light. We lift this limitation by combining
NIR gated cameras with high-resolution visible-spectrum RCCB sensors.

Cross-Spectral Matching Conventional stereo matching algorithms assume match based
on the brightness constancy assumption. However, using multiple sensors, operating
in distinct spectral ranges, has been investigated as an additional source of informa-
tion. Progress was reported in areas such as Face Recognition [37, 46, 49], self-driving
cars [33, 86], visual surveillance [44], and smartphones [74]. Existing methods have
proposed methods for matching features that may be visually distinct but remain se-
mantically congruent [15, 30, 35, 39, 62, 70, 75, 92]. Early work [62] explores gradi-
ents as a robust feature for cross-modal matching, while [35] focuses on the alignment
of monochrome images, which have increased light sensitivity, with RGB images to
achieve precise depth in dim lighting scenarios. Recent methods [39,55,75,79,92] aim
to learn cross-modal matching, where some aim to morph one modality directly into an-
other [79,92], while others propose novel descriptors for modality matching [39,75,92].

3 Multi-view Gated and RCCB Imaging

We propose to image a scene with a gated camera stereo system and an RCCB stereo
array characterized both by a baseline of b = 0.76 m. The gated imager is an active
sensor and emits a pulse of light with a confined wavelength around 808 nm, whereas
the RCCB camera is a passive sensor with a sensitivity spectrum spanning the visible
band from 380 - 1050 nm. While conventional RGB cameras use color filter arrays
with an RGGB pattern, often referred to as a Bayer pattern, in RCCB cameras the green
channels are replaced with clear channels. The inclusion of clear channels in this pattern



Cross-Spectral Stereo Depth Estimation 5

allows an enhanced light sensitivity, boosting its performance ≈ 30% during night-time
conditions. In addition, the used Onsemi AR0820AT image sensor is optimized for both
low light and challenging high dynamic range scene performance, with a 2.1 µm DR
Pix BSI pixel and on-sensor 140 dB HDR capture capability.

In the stereo gated camera system, a laser pulse p is emitted at t = 0. Following a set
time delay ξ, the reflected scene is then integrated on both camera sensors. Only photons
within a specific temporal gate are captured, using the gate function g, embedding depth
data into 2D imagery. As detailed by Gruber et al. [25], these intensities, or range-
intensity-profiles Ck(z), are scene-independent and can be expressed as

Ik(z, t) = αCk(z, t),

= α

∞∫
−∞

gk(t− ξ)pk

(
t −

2z

c

)
β(z)dt,

(1)

where Ik(z, t) is the gated exposure at distance z and time t; α represents surface re-
flectance, while β accounts for atmospheric attenuation. Both image sets are calibrated
and rectified for aligned epipolar lines, enabling disparity d estimation. This disparity
corresponds to distance z = bf

d , offering depth insights across all slices. Ambient light
sources, such as sunlight or vehicle headlights influence the gated system’s operation.
These photons get modulated by a constant term Λ. Separately, irrespective of ambient
light, there is a dark current, Dk

v , which is dependent on the gating settings. In total we
model an image with

Ikv (z) = αCk(z) + Λ+Dk
v . (2)

We follow [80], capturing additional passive HDR images with fixed exposure times of
21 µs and 108 µs during the day, and extending these to 805 µs and 1745 µs at night.

When integrating both gated and RCCB stereo systems, each camera is represented
by its calibration matrix K. The relative orientation and position between cameras in a
stereo pair are captured by the rotation matrix, R ∈ SO(3), and the translation vector,
t ∈ R3×1.

4 Depth from RCCB and Gated Stereo

In this section, we introduce our cross-modal fusion technique for depth prediction,
which relies on multi-view cues from RCCB stereo and gated stereo images. By reg-
istering and fusing cross-spectral features through an attention mechanism and prior
pose refinement within the stereo network, we capitalize complementary information
from different camera modalities in Sec. 4.1. We integrate this feature fusion in a stereo
network described in Sec. 4.2 which we jointly train uni-modal and multi-modal, facil-
itating a holistic feature representation across modalities and minimizing domain dif-
ferences between modalities as detailed in Sec. 4.1. The training approach is detailed in
Sec. 4.3.
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Fig. 2: Cross-Spectral Matching (CSM). The layer fuses encoded features from RCCB (F c
l ) and

gated (F g
l ) images. In the coarse registration step, RCCB features are aligned with gated features

based on calibrated poses Xc→g . Registration is refined based on residual pose X̂c|g→g estimated
from coarse aligned images and measured time delta with PoseNet. Registered images are fused
with attention-based fusion retaining complementary information in F̂ .

4.1 Cross-Spectral Matching

We align and combine cross-modal features in a two-stage approach, where we warp
features first into a shared space based on a refined pose. With these aligned features
in hand, we perform an attention-based fusion as input to the remainder of the stereo
estimation network. An overview of cross-spectral matching (CSM) is illustrated in
Fig. 2.

Feature Extraction and Alignment. We utilize two feature extractor backbones for
color f c

b and gated fg
b , and share the weights for each view Iml , Imr for m ∈ {c, g},

that is

f c
b : Icl , I

c
r → F c

l , F
c
r , (3)

fg
b : Igl , I

g
r → F g

l , F
g
r . (4)

As a feature extractor, we use MPViT [45], a powerful vision transformer for dense pre-
diction tasks. To align the features, we use the pose information from camera calibra-
tion Xx→g and an intermediate depth estimation ẑgl from an iterative depth estimation
method, see Section 4.2, to warp corresponding views. The mapping for homogeneous
coordinates xg and xc from Igl and Icl is defined as

xg ∼ KcXc→g ẑglK
−1
g xc, (5)

where Kc and Kg are the camera matrices of the gated and RCCB camera, and Xc→g =(
Rc→g tc→g

0 1

)
with Rc→g ∈ SO(3) and tc→g ∈ R3×1. We transform the features of the

left RCCB camera, denoted F c
l , to match the features of the left gated camera F g

l , thus
creating F̃

c|g
l .

Pose Refinement. The RCCB stereo camera and the gated stereo camera are indepen-
dently synchronized to microsecond precision. However, the RCCB camera may accu-
mulate a slight offset of up to 20 milliseconds between images because of automatic
exposure and shutter timing. To address this misalignment, we utilize a lightweight
Convolutional Neural Network (CNN) framework dubbed PoseNet p. This framework
estimates the rotational and translational adjustments necessary for alignment, based on
prealigned feature maps. The input to p is the concatenated context F g

l , the transformed
F̃

c|g
l and the measured time offset t between modalities. The time is integrated into ev-

ery downsampled layer of the pose network as additional channel, except for the final
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Fig. 3: The proposed cross-spectral stereo architecture for depth estimation from stereo RCCB
and stereo gated images incorporating our CSM layer. The network can output depth for all four
input images. Intermediate depth estimates are used for iterative fusion within the CSM along the
depth estimation process. The network is trained with self-supervision (Left-Right consistency
for RCCB and gated images, Gated Reconstruction) and LiDAR supervision.

layer. This channel uniformly replicates the value of the time-offset across the spatial
dimension. The computed pose update, denoted as X̂c|g→g combines the initial pose as
X̃c→g = Xc→g · X̂c|g→g . Subsequently, a second warping operation with the mapping

xg ∼ KcX̃c→g ẑglK
−1
g xc, (6)

is applied, which generates the aligned features F c|g
l .

Attention-based Feature Fusion. Following the alignment, we fuse RCCB and gated
features, aiming to combine contextual information from both spectra effectively. Our
approach adopts a two-step process. Firstly, we employ channel self-attention for ag-
gregating both global and local contexts within feature maps. Secondly, we combine
the individual feature maps, utilizing the predicted attention weights. The first setup is
defined as

F̄ =
F g
u ⊕ F c

u

au(F
g
l ) + au(F c

l )
(7)

F g
u = F g

l ⊗ au(F
g
l ) (8)

F c
u = F

c|g
l ⊗ au(F

c|g
l ), (9)

where ⊕ denotes element-wise addition and ⊗ indicates element-wise multiplication,
and the attention au() is calculated following [18]. The final fusion of features F̂ are
the result of the following weighting-operation

F̂ =
(
F g
u ⊗ am(F̄ )

)
⊕
(
F c
u ⊗ (1− am(F̄ ))

)
, (10)

where am follows the implementation as in [18] and denotes the multi-modal attention
network, facilitating the effective combination of features from both modalities.
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4.2 Stereo Matching

With the process to align features F̂ in hand, we predict depth across all camera views.
This task is executed through a stereo matching network, as depicted in Figure 3. We
build on top of the CREStereo architecture [48] with major modifications to allow the
development of a dynamic framework switching between modalities. This dynamic
interchangeability allows us to adapt and optimize the disparity prediction in either
modalities coordinate system. Such flexibility not only enhances domain generaliza-
tion but also opens avenues for the application of various consistency losses, thereby
improving the accuracy of our predictions.

To bridge the coordinate system we heavily rely on the CSM layers, whose pre-
dicted context feature maps are used to guide the prediction in the targeted frames.
Thereby, we rely on the iterative refinement introduced in [48] and calculate the cor-
relation volume in each step according to [48]. Here, we predict the correlation in the
adaptive group correlation layers uni-modal and alternate in modality through the it-
erative refinement. The secondary modality is projected into the target frame with the
refined transformation X̃c→g in the pre-correlation warping PCW, see Fig. 3.

Then the correlation is calculated as follows,

Corr(x, y, k) =
1

C

C∑
i=1

F v
l (i, x, y)F

v
r (i, x

′, y′), (11)

where F v is the respective feature map transformed into the modality v ∈ {c, g, c|g, g|c},
with camera view l, r. We follow [48] and predict x′ = x+ f(k), y′ = y + g(k), with
fixed offsets f(k) and g(k) for the k-th correlation pair, sum all channels C and apply
2D-1D alternate local search strategy for computational efficiency. Notably, the initial
iteration at the coarsest scale focuses on predicting depth solely from the target modal-
ity.

4.3 Training Supervision

The network is trained to output the disparity d which is converted into the depth z for
all modalities g, c and views l, r. In addition, we train the stereo matching uni-modal
and multi-modal, with and without cross-spectral feature enhancement to ensure op-
timal extracted features while sharing the stereo matching stage. This is achieved by
deactivating the CSM and PCW layers. Through this alternating training, we ensure
that the backbone learns relevant features for all modalities and the mix and matching
between modalities forces all features to be domain independent, thereby creating ro-
bust cross-modal representations. Further, this allows us to implement self-supervised
and supervised loss functions for both the gated camera and the RCCB camera, as well
as consistencies in between.

All self-supervised consistency losses and supervised losses are described below.
Without diminishing generality, in the following, all losses are defined for disparity
prediction in the gated frame for better readability.

Left-Right Reprojection Consistency. The projection loss enforces the photomet-
ric consistency between the left and right camera views within each modality. Cross-
modally the homogeneity between predicted depth maps is enforced. The total loss for
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the left gated camera gl can be written as,

Lgl
w = Lp(I

g
l , I

g
r|lg ) + Lp(I

c
l|lg , I

c
r|lg ) + Lp(z

c|g
l , zgl ), (12)

with Igr|lg the r right g gated image warped into the l left gated view using the predicted
depth zgl denoted as warping operation lg for the stereo pairs. For the gated warping
consistency further the RCCB frames IC are warped according to the predicted depth
into the gated frame lg . Additionally, the predicted depth in c is transformed to the
gated frame g leading to z

c|g
l . Consistencies are also applicable to the right gated frame,

yielding Lgr
w , and to both left Lcl

w and right Lcr
w RCCB frames. The total loss can be

written as Lreproj = Lcl
w + Lcr

w + Lgl
w + Lgr

w . Note, Lp follows [21] and is a similarity
loss based on the structural similarity (SSIM) metric [83] and the L1 norm, Lp(a, b) =

0.85 1−SSIM(a,b)
2 + 0.15∥a− b∥1.

Gated Reconstruction Loss. To supervise the embedded time of flight information in
the gated slices we adopt the cyclic gated reconstruction loss from [78], which uses
measured range intensity profiles to reconstruct the input gated images from the pre-
dicted depth z, the albedo α̃, and the ambient Λ̃. Departing from [78] who employed
measured profiles, we employ an analytical gating model. We estimate the albedo α̃
and ambient Λ̃ through an additional context encoder taking the feature pyramid as in-
put, see Figure 3, and model a gated slice as Ĩk(z) = α̃ Ck(z) + Λ̃. The loss term
incorporates both per-pixel difference and structural similarity, following

Lrecon = Lp(Mg ⊙ Ĩk(z),Mg ⊙ Ik) + Lp(Λ̃, Λ
k0), (13)

with Mg as per-pixel SNR consistency mask [78].

LiDAR Supervision. We supervise final and intermediate disparity predictions. Each
disparity prediction {dl,i, ...,dl,n} is upsampled to full resolution and compared to
ground-truth with a weighted combination of l1 and l2 defined as,

Llidar =

n∑
i=1

γn−i
(2
3
||dgt −M ⊙ dl||1 +

1

3
||dgt −M ⊙ dl||22

)
. (14)

The weight γ is set to 0.9 and the mask M excludes areas without ground-truth. For
ground-truth we use accumulated and sparse LiDAR measurements, more details in
Section 5.

Overall Training Loss. The following loss term is obtained by combining all self-
supervised and supervised loss components from above,

Lstereo = c1Lreproj + c2Lrecon + c3Llidar, (15)

which we combine with scalar weights c1,...,3 provided in the Supplemental Material.

Implementation Details. We refer to the Supplemental Document for implementation
details, training settings, and hyperparameter settings used for the approach described.
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Fig. 4: The sensor setup of the test vehicle used for capturing the dataset. It features a stereo gated
camera, consisting of a flood-light flash source (not visible, mounted at front bumper of the car)
and two gated imagers, a Velodyne VLS128 scanning lidar, a standard stereo RGB camera and
the RCCB stereo camera.

5 Dataset

For training and testing, we use the dataset introduced by Walz et al. [80]. The dataset
includes stereo gated, stereo RGB and ground-truth LiDAR data. More information is
given in the Supplemental Material. In this work, we extend the dataset with RCCB
stereo data, captured with an AR0820 sensor. All sensors were housed in a portable
sensor cube as showcased in Figure 4. As an additional source of ground-truth, we
utilize a densely constructed LiDAR map, derived from a custom adaptation of the LIO-
SAM algorithm, as detailed in Shan et al. [69]. We refer to the Supplemental Document
for details on the setup and dataset.

6 Assessment

In this section, we experimentally validate our proposed method. We examine the ac-
curacy of our depth estimation under nighttime and daytime conditions and compare
it to existing depth estimation techniques. Furthermore, we validate our design choices
through a series of ablation studies.

Experimental Setup. The test set comprises 2463 frames, split into 1269 daytime and
1194 nighttime frames. Each frame is accompanied by high-resolution LiDAR ground-
truth measurements, capturing reliable data up to 160 m. We further use the 655 frames
of refined LiDAR ground-truth (303 daytime and 352 nighttime). These frames feature
accumulated point clouds, allowing us to assess the methods on a dense ground-truth
for accuracy up to a distance of 220 m. Our method’s evaluated depth maps show the
perspective of the left gated camera and match the resolution of the RCCB images.

Our evaluation metrics are in line with those established in [19]. We use Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Absolute Relative Difference
(ARD), and the threshold accuracy metric δi < 1.25i for i ∈ 1, 2, 3. All methods in
our evaluation have been fine-tuned on our dataset for a fair comparison.
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METHOD
Modality Train RMSE ARD MAE δ1 δ2 δ3 RMSE ARD MAE δ1 δ2 δ3

[m] [m] [%] [%] [%] [m] [m] [%] [%] [%]

Test Data – Night Test Data – Day

C
O

M
PA

R
IS

O
N

T
O

ST
A

T
E

-O
F

-T
H

E
-A

R
T

GATED2DEPTH [24] Mono-Gated D 16.15 0.17 8.07 75.70 92.74 96.47 28.68 0.22 14.76 66.68 82.76 87.96
GATED2GATED [78] Mono-Gated MG 14.08 0.19 7.95 79.84 92.95 96.59 16.87 0.21 9.51 73.93 92.15 96.10
PACKNET [26] Mono-RGB M 17.82 0.20 10.21 66.35 87.85 95.61 17.69 0.21 9.77 72.12 90.65 96.51
MONODEPTH2 [22] Mono-RGB M 18.44 0.18 9.47 75.70 90.46 95.68 20.78 0.22 10.06 79.05 90.66 94.69
SIMIPU [50] Mono-RGB D 15.78 0.18 8.71 76.25 90.84 96.44 14.33 0.14 7.50 81.77 94.01 97.92
ADABINS [5] Mono-RGB D 14.45 0.15 7.58 81.47 93.75 97.39 12.76 0.12 6.53 86.15 95.77 98.41
DPT [64] Mono-RGB D 12.15 0.12 6.31 85.38 95.94 98.42 11.29 0.09 5.52 89.56 96.83 98.79
DEPTHFORMER [51] Mono-RGB D 12.15 0.11 6.20 85.18 95.76 98.47 10.59 0.09 5.06 90.65 97.46 99.02
PSMNET [14] Stereo-RGB D 27.98 0.27 16.02 50.77 74.77 85.93 32.13 0.28 18.09 53.82 74.91 84.96
STTR [54] Stereo-RGB D 20.99 0.19 11.14 70.84 87.70 93.46 16.77 0.16 8.99 78.44 93.53 98.01
HSMNET [88] Stereo-RGB D 12.42 0.09 5.87 88.41 96.08 98.50 10.36 0.08 4.69 92.47 97.93 99.11
ACVNET [87] Stereo-RGB D 11.70 0.08 5.25 89.91 96.33 98.47 9.40 0.07 4.08 94.61 98.36 99.12
RAFT-STEREO [56] Stereo-RGB D 10.89 0.09 5.10 90.47 96.71 98.64 9.40 0.07 4.07 93.76 98.15 99.09
CS-STEREO [92] RCCB-NIR D 21.35 0.20 11.48 72.73 89.71 95.58 21.51 0.22 11.87 73.70 88.77 96.06
UCSSM [55] RCCB-NIR D 18.22 0.27 14.63 64.51 87.12 94.27 17.32 0.29 13.26 64.80 84.78 93.83
CRESTEREO [50] Stereo-RCCB D 12.05 0.10 5.18 88.48 94.12 97.26 9.68 0.06 3.88 95.02 96.04 98.57
GATED STEREO [80] Stereo-Gated DGS 6.39 0.05 2.25 96.40 98.44 99.24 7.11 0.05 2.25 96.87 98.46 99.11
GATED RCCB STEREO Stereo-RCCB-Gated DGS 6.23 0.04 2.03 96.69 98.50 99.26 6.89 0.03 1.95 97.18 98.55 99.18

Table 1: Evaluation of the method and competing gated approaches on [80]. We compare our
model to supervised and unsupervised approaches. “M” refers to methods that use temporal data
for training, S for stereo supervision, “G” for gated consistency and “D” for depth supervision.
Best results in each category are in bold and second best are underlined.

Test Data – Night Test Data – Day

EVALUATION RANGE 0 - 160 m 0 - 220 m 100 - 220 m 0 - 160 m 0 - 220 m 100 - 220 m

METHOD RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CRESTEREO [48] 13.58 8.60 17.64 10.05 26.39 20.24 11.16 6.53 15.65 8.11 20.76 14.65
GATED STEREO [80] 11.45 7.36 14.03 8.93 25.55 18.36 10.75 6.42 14.24 8.67 22.07 16.79
GATED RCCB STEREO 10.74 7.02 12.02 7.94 15.67 11.15 9.72 6.24 10.69 6.83 14.33 10.07

Table 2: Evaluation on Accumulated LiDAR Scans. We compare our method to the top 3 methods
from Tab. 1 using accumulated dense LiDAR as ground-truth for a range from 0 - 220 m.

Depth Reconstruction. Qualitative results are presented in Figure 7 and quantitative re-
sults in Table 1. Here, we compare against three recent gated [24,78,80], six monocular
RGB [5,22,26,50,51,64], six stereo RGB [14,48,54,56,87,88] and two cross-spectral
stereo [55, 92] methods. Compared to the next best stereo method, Gated Stereo [80],
our method reduces the error by 9.7 % and 0.22 m in Mean Absolute Error (MAE)
during nighttime conditions and by 13.3 % and 0.3 m during day conditions. Addition-
ally, we compare our method to the two next-best stereo methods [48, 80] on accu-
mulated LiDAR ground-truth maps which allow assessment up to 220 m in Table 2.
Our method reduces the error of the next best method averaged over day and night,
Gated Stereo [80], by 16.1 % and 1.4 m and CREStereo [48] by 17.1 % and 1.7 m. For
distances between 100 and 220 m, our method achieves an improvement of 39.6 %
over [80] and 39.2 % over [48], demonstrating a considerable improvement at long dis-
tances. Note that [80] is designed for distances up to 160 m only. Qualitatively, this
improvement is visible in sharper edges and rendering of fine details missed by other
methods. Compared to the two next-best methods [48, 80], the benefits of our cross-
spectral depth estimation are highlighted for fine structures at large distances, see Fig. 5.
Compared to alternative cross-spectral stereo methods like CS-Stereo [92], our method
is visually and quantitatively superior by a wide margin of 83.0 % as these methods
generally don’t display details.
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Fig. 5: Comparison of our method to LiDAR and the best state-of-the-art methods that rely only
on a single modality: Gated Stereo (gated images) [80] and CREStereo (RCCB images) [48]. Our
method recovers fine details of distant objects irrespective of daylight and nighttime. Limitation
of depth range in colorized depth maps for visualization purposes only.

Qualitative Assessment of Lost Cargo Data Our study includes a qualitative compar-
ison of depth estimation methods, focusing on detecting small, potentially hazardous
highway objects (as shown in Figure 6, with more examples in the Supplemental Mate-
rial). This is critical for autonomous driving, where early detection of such "lost cargo"
is necessary for safe maneuvering. Traditional LiDAR often lacks the necessary depth
detail for small objects, while passive RCCB cameras are effective in daylight but less
so in low light. Gated cameras, although useful, struggle in bright conditions and have
lower resolution. Our analysis highlights that high-resolution RCCB data and precise
time-of-flight gated data combined with our cross-spectral gated stereo surpass single-
modality sensors in detecting small objects at long distances, an essential capability for
advanced autonomous driving systems.

Fig. 6: Depth estimation for "lost cargo", small objects at far distances on ground level that may be
lost from preceding vehicles. Our method estimates accurate depth for these small objects in both
daylight and nighttime conditions by integrating complementary RCCB and gated images. Single
modality methods suffer from limitations: CREStereo [48] (RCCB) lacks effective illumination
at night, and Gated Stereo [80] suffers from poor resolution during the day.

Ablation Experiments. Next, we evaluate the effectiveness of our method by progres-
sively removing components from the full model, see Table 3. We start with the full
model, achieving the overall best metrics averaged over day and night. First, we down-
sample the RCCB image to a third of its original height and width, effectively setting
the resolution of the depth map to be similar to the resolution of the gated image. This
leads to a visible reduction of details in the depth map which cannot be measured quan-
titatively using sparse LiDAR. To assess the effectiveness of our cross-spectral (CS)
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Modality Full CS Pose Att. MPViT RMSE MAE δ1 δ2 δ3 RMSE MAE δ1 δ2 δ3
Res. Training Ref. Fusion Backb. [m] [m] [%] [%] [%] [m] [m] [%] [%] [%]

Test Data – Night Test Data – Day

A
B

L
A

T
IO

N

Stereo-RCCB-Gated ✓ ✓ ✓ ✓ ✓ 6.23 2.03 96.69 98.50 99.26 6.89 1.95 97.18 98.55 99.18
Stereo-RCCB-Gated ✗ ✓ ✓ ✓ ✓ 6.53 2.04 96.37 98.45 99.24 7.09 1.93 97.03 98.46 99.11
Stereo-RCCB-Gated ✗ ✗ ✓ ✓ ✓ 6.87 2.18 96.20 98.24 99.13 7.57 2.12 96.62 98.35 99.04
Stereo-RCCB-Gated ✗ ✗ ✗ ✓ ✓ 6.98 2.23 96.01 98.21 99.11 7.64 2.16 96.37 98.52 99.06
Stereo-RCCB-Gated ✗ ✗ ✗ ✗ ✓ 7.23 2.42 95.89 98.20 99.10 7.92 2.29 96.50 98.25 98.00
Stereo-RCCB-Gated ✗ ✗ ✗ ✗ ✗ 8.17 2.74 95.23 97.79 98.89 8.17 2.44 96.46 98.12 98.92
RCCB-Gated ✗ ✗ ✗ ✗ ✗ 10.56 7.89 45.23 79.49 91.14 8.61 4.73 67.33 89.75 96.30
Mono-Gated ✗ ✗ ✗ ✗ ✗ 10.87 4.70 89.91 95.77 97.90 13.71 6.05 88.99 95.56 97.71

Table 3: Ablation Experiments on the dataset from [80]. We investigate different resolutions,
training methods, remove components of our proposed CSM, the MPViT [45] backbone and test
different input modalities.

Fig. 7: Qualitative comparison of our Gated-RCCB Stereo and existing methods. Our approach
is unique in its ability to produce consistently accurate and high-detail depth maps regardless
of the ambient illumination condition. In our depth maps, fine structures such as trees or poles
are clearly visible, unlike other methods that struggle with consistent depth prediction for these
elements. For enhanced visibility of distant objects, the color maps used in zoom-ins are inverted
and scaled.

training approach, encompassing alternating training, self-supervised losses, and dense
LiDAR supervision, we then remove this component, training with sparse LiDAR su-
pervision only, which results in an increase in MAE by 8.4%. Further simplification
involves omitting the pose-refinement step within our proposed CSM. This step, too,
causes an increase in MAE by 2.1%, indicating the effectiveness of these components in
our method. Subsequent removal of the attention-based feature fusion mechanism and
replacing MPViT backbone with the backbone from [48] shows an additional decrease
in MAE by 7.3% and 9.9%, respectively. Next, we analyze the impact of the dual-
camera setup, comprising one RCCB and one gated camera. Discarding this setup leads
to more than double the MAE, highlighting the importance of the double stereo cam-
era configuration. Finally, we revert to a monocular depth estimation baseline, which
records the highest daytime MAE, highlighting the value of stereo cues.
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7 Conclusion

In this study, we devise a novel cross-spectral method for stereo depth estimation, com-
bining active gated NIR and high-resolution HDR RCCB cameras. This approach out-
performs existing LiDAR sensors in spatial resolution without compromising depth
accuracy. Our method is effective in varying lighting conditions, with gated NIR ex-
celling at night and RCCB cameras in daylight. To combine both modalities, we pro-
pose a stereo depth estimation method that hinges on a new cross-spectral fusion mod-
ule trained both supervised and self-supervised losses. Economically viable, our sys-
tem employs cost-effective CMOS sensors, achieving depth with superior accuracy and
quality, surpassing existing methods that rely on single modalities by 39% in MAE
at long ranges. This enables novel applications like long-distance detection of small
ground-level objects.
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